首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis of sulfated glycosaminoglycans by embryonic corneal epithelium   总被引:11,自引:0,他引:11  
The primary corneal stroma is produced by the overlying epithelium. The endothelium appears between 4 and 5 days, fibroblasts at 6 days, and at 12 days the epithelium stratifies. We investigated the synthesis of glycosaminoglycan (GAG) by the epithelium during this developmentally significant period. The sulfated GAG synthesized by isolated 4–6-day-old corneal epithelia during the first 24 hr in vitro are entirely accountable for as chondroitin sulfates and heparan sulfates. Nearly 50% of the total sulfated GAG synthesized by epithelia on Millipore filters is lost to the medium, but only 30–40% is lost when frozen killed lens capsule or stroma is the substratum. Retention of isotope by the tissue is correlated with visible matrix polymerization. The relative amount of heparan sulfate synthesized by the developing epithelium 24 hr in vitro decreases from about 50% of the total sulfated GAG for 4-day-old epithelium to 12% for 12-day-old epithelium. A similar decrease in heparan sulfate synthesis occurs with time in culture. The relative amount of GAG identified as chondroitin sulfate and heparan sulfate is the same when 3H-glucosamine is used to label GAG as when 35SO4 is used. We conclude that the corneal epithelium produces only sulfated polysaccharides. Since hyaluronate is synthesized by whole 5-day-old corneas, it must be the product of the endothelium.  相似文献   

2.
Corneal epithelial differentiation (primary stroma production) is dependent on the underlying extracellular matrix (ECM), for if the developing epithelium is enzymatically removed from the embryo, it fails to produce stroma in vitro unless it is cultured on collagenous ECM. We have previously shown that the stimulatory effect is mediated across Nucleopore filters in direct proportion to the surface area created by epithelial cell processes traversing the filter to contact ECM. Since collagenous ECM is insoluble under physiological conditions, transfilter stimulation of stroma production is probably due to an interaction of the epithelial cell surface with “inducer” ECM (killed lens capsule or purified collagen). We grew 5-day-old corneal epithelia on Nucleopore filters atop [3H]proline-labeled lens capsules and used both autoradiography and scintillation counting to show that radioactive collagen does not enter the epithelial cells in detectable amounts. We also show here that the stimulatory effect of collagen on collagen synthesis is not dependent on trapping of serum or binding of conditioned medium factors by ECM. Finally, we demonstrate that the stimulatory effect is reduced by removal of transfilter ECM after 6–12 hr in vitro. By 18–24 hr, however, cultured epithelium is less dependent on the substratum, probably because it has produced its own ECM. We conclude that: (1) the contact mediated collagen-cell surface interaction under study here requires the continuous presence of collagen in vivo and in vitro for maintenance of “stimulated” epithelial stroma synthesis; (2) the collagenous “inducer” interacts directly with epithelium rather than indirectly via trapped intermediates; (3) collagen acts at the epithelial cell surface without entering the cells.  相似文献   

3.
The present study was undertaken to determine whether or not physical contact with the substratum is essential for the stimulatory effect of extracellular matrix (ECM) on corneal epithelial collagen synthesis. Previous studies showed that collagenous substrata stimulate isolated epithelia to produce three times as much collagen as they produce on noncollagenous substrate; killed collagenous substrata (e.g., lens capsule) are just as effective as living substrata (e.g., living lens) in promoting the production of new corneal stroma in vitro. In the experiments to be reported here, corneal epithelia were placed on one side of Nucleopore filters of different pore sizes and killed lens capsule on the other, with the expectation that contact of the reacting cells with the lens ECM should be limited by the number and size of the cell processes that can tranverse the pores. Transfilter cultures were grown for 24 h in [3H]proline-containing median and incorporation of isotope into hot trichloroacetic acid-soluble protein was used to measure corneal epithelial collagen production. Epithelial collagen synthesis increases directly as the size of the pores in the interposed filter increases and decreases as the thickness of the filter layer increases. Cell processes within Nucleopore filters were identified with the transmission electron microscope with difficulty; with the scanning electron microscope, however, the processes could easily be seen emerging from the undersurface of even 0.1-mum pore size filters. Morphometric techniques were used to show that cell surface area thus exposed to the underlying ECM is linearly correlated with enhancement of collagen synthesis. Epithelial cell processes did not pass through ultrathin (25-mum thick) 0.45-mum pore size Millipore filters nor did "induction" occur across them. The results are discussed in relation to current theories of embryonic tissue interaction.  相似文献   

4.
The corneal stroma of the chick embryo is deposited in two steps. The primary stroma is laid down by the corneal epithelium and it contains type I, type II and type IX collagens. Its formation is subsequent to the presumptive epithelial cells' migration onto the lens capsule (which is rich in type IV collagen). The secondary, ultimate stroma is synthesized by fibroblasts whcih, on day 5 of development, invade the swollen primary stroma. It is composed of a matrix of thin (25 nm), regular fibrils containing type I and type V collagens.We found that a chick corneal epithelium isolated from either a 6-day or a 14-day embryo was able to produce, in vitro, stroma-containing type I collagen fibrils. However, the amount of collagen deposited and its organization were highly dependent on the substratum used. Plastic or purified bovine type I collagen substrata led to the release of very few fibrils. Purified human type IV collagen induced the production of an abundant matrix made of large irregular collagen fibrils.When compared to native corneal stroma, there were two aspects in which this matrix differed: (1) it contained only type I collagen, as shown by indirect immunofluorescence, and (2) there were numerous large, irregular fibrils of about 100 to 130 nm in diameter.In conclusion, it is suggested that purified type IV collagen substitutes, in part, for the basement membrane and allows the production of a corneal stroma-like matrix by an embryonic corneal epithelium in culture. This production is possible even with a 14-day epithelium which, in vivo, is no more involved in the synthesis of the stroma collagens. Moreover, the regulatory effect of type II collagen, previously suggested by in vivo observations, may be confirmed in this in vitro system by the appearance of large fibrils in the newly deposited stroma that are made only by type I collagen.  相似文献   

5.
The present study traces corneal morphogenesis in a reptile, the lizard Calotes versicolor, from the lens placode stage (stage 24) until hatching (stage 42), and in the adult. The corneal epithelium separates from the lens placode as a double layer of peridermal and basal cells and remains bilayered throughout development and in the adult. Between stages 32– and 33+, the corneal epithelium is apposed to the lens, and limbic mesodermal cells migrate between the basement membrane of the epithelium and the lens capsule to form a monolayered corneal endothelium. Soon thereafter a matrix of amorphous ground substance and fine collagen fibrils, the presumptive stroma, is seen between the epithelium and the endothelium. Just before stage 34 a new set of limbic mesodermal cells, the keratocytes, migrate into the presumptive stroma. Migrating limbic mesodermal cells, both endothelial cells and keratocytes, use the basement membrane of the epithelium as substratum. Keratocytes may form up to six cell layers at stage 37, but in the adult stroma they form only one or two cell layers. The keratocytes sysnthesize collagen, which aggregates as fibrils and fibers organized in lamellae. The lamellae become condensed as dense collagen layers subepithelially or become compactly organized into a feltwork structure in the rest of the stroma. The basement membrane of the endothelium is always thin. Thickness of the entire cornea increases up to stage 38 and decreases thereafter until stage 41. In the adult the cornea is again nearly as thick as at stage 38.  相似文献   

6.
Corneal epithelium from 5–7-day old chick embryos was isolated with EDTA and grown in culture on frozen-killed lens as a substratum. Autoradiographs showed that in the presence of [3H]proline, the corneal epithelium synthesized and secreted onto the lens substratum, radioactive materials resistant to extraction by sodium hydroxide. The radioactive label was associated with newly formed striated collagen fibrils, large "sheets" of collagen, and basal lamina. The repeat period and interband pattern of the abundant new collagen sheets and fibrils was typical of "native" or so-called "mesenchymal" collagen. Collagen-like materials were observed in secretory (Golgi) vacuoles within the corneal cells and collagen fibrils within the intercellular canals (lateral interfaces) of the epithelium, as well as at the base of the cells. Both the granular endoplasmic reticulum and Golgi complexes were highly developed in the corneal epithelium. In the discussion, the role of cytoplasmic organelles in collagen secretion, the origin and structure of the basal lamina, and variations in collagen polymerization patterns in vitro are reviewed and evaluated. The morphogenetic significance of the synthesis and secretion of collagen by embryonic epithelium is appraised and the production of true native-striated collagen by epithelium is stressed.  相似文献   

7.
Hemidesmosome formation by embryonic chick corneal epithelium in vitro   总被引:1,自引:0,他引:1  
This study was undertaken in order to determine whether 15-day embryonic chick corneal epithelial cells can form hemidesmosomes when cultured on a variety of substrata. It was found that hemidesmosomes were formed on gelatin films, hydrated collagen gels, lens capsule, scraped corneal stroma, matrix produced by corneal endothelial cells and untreated tissue culture plastic. Hemidesmosomes were found after 5 days in cultures produced from either dissociated epithelial cells or whole epithelial explants. Hemidesmosomes occurred both singly and in groups and their morphology varied between well-defined structures with attachment plaques, sub-basal dense plates and connections to intracellular filamentous networks, and more rudimentary forms. The presence of extracellular material was often associated with the hemidesmosomes, although it was also possible to find hemidesmosomes where this material was absent. This work suggests that, in the embryonic chick cornea, extracellular structures such as anchoring filaments and anchoring fibres often associated with mature hemidesmosomes are not essential for hemidesmosome formation.  相似文献   

8.
In the analysis of endothelial morphogenesis reported here, scanning and transmission electron microscopes and the Nomarski light microscope were used to study both untreated and manipulated eyes of chick embryos. We found that migration of the cells into the corneal area is preceded at stage 22 by a movement of macrophages between the lens and posterior surface of the corneal stroma. At stage 23, endothelial cells move out mainly from the nasal and temporal edges of the eye where they were associated with vascular (primary) mesenchyme. Initially, they migrate through a fibrous matrix which occupies the space between lens and optic lip. When the endothelial cells reach the stroma and capsule of the lens, they can use both these surfaces as substrata, even though they seem to be more adherent to the stroma. By stage 25, the endothelium is complete and covered with fibrous matrix, which now fills and may help form the anterior chamber. The cells, initially mesenchymal, now differentiate to become epithelial (a characteristic of primary mesenchyme). The migrating endothelial cells have extended lamellipodia and filopodia along their leading edges; they show no evidence of ruffling. Moreover, contact inhibition alone does not cause them to monolayer; the presence of the lens is essential to prevent multilayering of the newly formed endothelium. In the discussion, the role of extracellular matrix and tissue boundaries in directing cell migration in vivo is emphasized.  相似文献   

9.
Between the third and sixth day of embryonic development, the avian corneal epithelium produces both a basal lamina and the primary corneal stroma composed of 20 orthogonally arranged layers of collagen fibrils. If the epithelium is removed by enzyme treatment from the basal lamina and stroma, the basal cell surface extends cell processes (blebs) which contain disorganized actin filaments and the epithelium decreases production of collagen. When placed on extracellular matrix or on Millipore filters in media containing soluble matrix molecules, the epithelium retracts the blebs, forms an organized basal actin cortical mat, and doubles its production of collagen. In the current investigation, we provide evidence for the hypothesis that organization of the RER by the actin cytoskeleton mediates this stimulation of collagen production. Laminin-treated epithelia and epithelia isolated with the basal lamina intact were treated with an actin-disrupting drug, cytochalasin D. Actin aggregates occur throughout the epithelium, the RER becomes disorganized, and the increase in collagen production expected to result from addition of laminin does not take place. Morphometrical analysis of the distribution of RER in the basal compartment of control and cytochalasin-treated epithelia shows that the decrease in collagen production is accompanied by displacement of the RER from the basal area of the cells, suggesting that attachment of RER to the intact actin cytoskeleton is essential to maintenance of normal RER organization and function. We also found that laminin-mediated bleb retraction requires intact actin microfilaments, whereas bleb extension does not, and that nocodazole does not inhibit bleb extension or retraction.  相似文献   

10.
The development of the basement membrane and collagen fibrils below placodes, including the corneal region of the ectoderm, lens epithelium, nasal plate, and auditory vesicle in anuran larvae was observed by transmission electron microscopy and compared with that in nonplacodal regions such as the epidermis, neural tube, and optic vesicle. In the corneal region the lamina densa becomes thick concomitantly with the development of the connecting apparatuses such as hemidesmosomes and anchoring fibrils. The collagen fibrils increase in number and form a multilayered structure, showing similar morphology to the connective tissues below the epidermis. These two areas, i.e., the corneal region and epidermis, possess much collagenous connective tissue below them. On the other hand, the neural tube and ophthalmic vesicle that originated from the neural tube each have a thin lamina densa and a small number of underlying collagen fibrils. The lamina densa does not thicken and the number of collagen fibrils do not significantly increase during development. These two areas possess little extracellular matrix. The nasal plate and auditory vesicle show intermediate characteristics between the epidermis-type and the neural tube-type areas. In these areas, the lamina densa becomes thick and hemidesmosomes and anchoring fibrils develop. The number of collagen fibrils increases during development, but does not show an orderly arrangement; rather, they are randomly distributed. It is thought that the difference in the arrangement of collagen fibrils in different tissues is due to differences in the extracellular matrix around the collagen fibrils. Placodal epithelia have the same origin as epidermis, but during development their morphological characteristics differ and they are not associated with the pattern of extracellular matrix with characteristics of epidermal and corneal multilayered collagen fibril areas.  相似文献   

11.
Basal lamina formation by cultured microvascular endothelial cells   总被引:4,自引:1,他引:3       下载免费PDF全文
The production of a basal lamina by microvascular endothelial cells (MEC) cultured on various substrata was examined. MEC were isolated from human dermis and plated on plastic dishes coated with fibronectin, or cell-free extracellular matrices elaborated by fibroblasts, smooth muscle cells, corneal endothelial cells, or PF HR9 endodermal cells. Examination of cultures by electron microscopy at selected intervals after plating revealed that on most substrates the MEC produced an extracellular matrix at the basal surface that was discontinuous, multilayered, and polymorphous. Immunocytochemical studies demonstrated that the MEC synthesize and deposit both type IV collagen and laminin into the subendothelial matrix. When cultured on matrices produced by the PF HR9 endodermal cells MEC deposit a subendothelial matrix that was present as a uniform sheet which usually exhibited lamina rara- and lamina densa-like regions. The results indicate that under the appropriate conditions, human MEC elaborate a basal lamina-like matrix that is ultrastructurally similar to basal lamina formed in vivo, which suggests that this experimental system may be a useful model for studies of basal lamina formation and metabolism.  相似文献   

12.
Corneal tissues (epithelium, endothelium, and stroma) were isolated from chick embryos at 14, 17, and 20 days of incubation and immediately labeled in vitro with d-[6-3H]glucosamine and H235SO4. Amount of label incorporated into each type of glycosaminoglycan or into glycopeptides was determined by specific degradative techniques, in conjunction with gel filtration chromatography. Results suggested that corneal epithelium synthesized little, if any, corneal keratan sulfates, but that corneal endothelium may have synthesized small amounts of corneal keratan sulfates. Nearly all corneal keratan sulfates were derived from the stroma. Corneal heparan sulfates appeared to be derived predominantly from corneal epithelium at later stages of development. Corneal endothelium contributed large proportions of the hyaluronic acids of the cornea. Only epithelium produced a large proportion of sulfated glycoproteins. In addition, epithelium synthesized a large proportion of a sulfated, high molecular weight polysaccharide which was resistant to treatments degrading known types of glycosaminoglycans. Each corneal tissue may not only affect corneal morphogenesis directly by contributing a unique spectrum of glycosylated proteins to the extracellular matrix, but also may regulate the extracellular matrix composition indirectly by modulating the biosynthetic activities of the other corneal tissues.  相似文献   

13.
In considering the mechanism of transformation of epithelium to mesenchyme in the embryo, it is generally assumed that the ability to give rise to fibroblast-like cells is lost as epithelia mature. We reported previously that a definitive embryonic epithelium, that of the anterior lens, gives rise to freely migrating mesenchyme-like cells when suspended in type I collagen matrices. Here, we show that a highly differentiated epithelium that expresses cytokeratin changes to a vimentin cytoskeleton and loses thyroglobulin during epithelial-mesenchymal transformation induced by suspension in collagen gel. Using dispase and collagenase, we isolated adult thyroid follicles devoid of basal lamina and mesenchyme, and we suspended the follicles in 3D collagen gels. Cells bordering the follicle lumen retain epithelial polarity and thyroid phenotype, but basal cell surface organization is soon modified as a result of tissue multilayering and elongation of basal cells into the collagenous matrix. Cytodifferentiation, determined by thyroglobulin immunoreactivity, is lost as the basal epithelial cells move into the matrix after 3-4 days in collagen. By TEM, it can be seen that the elongating cells acquire pseudopodia, filopodia and mesenchyme-like nuclei and RER. Immunofluorescence examination of intermediate filaments showed that freshly isolated follicles and follicles cultured on planar substrata react only with anticytokeratin. However, all of the mesenchyme-like cells express vimentin and they gradually lose cytokeratin. These results suggest that vimentin may be necessary for cell functions associated with migration within a 3D matrix. The mesenchymal cells do not revert to epithelium when grown on planar substrata and the transformation of epithelium to mesenchyme-like cells does not occur within basement membrane gels. The results are relevant to our understanding of the initiation of epithelial-mesenchymal transformation in the embryo and the genetic mechanisms controlling cell shape, polarity and cytoskeletal phenotype.  相似文献   

14.
This paper makes three points about how the chick corneal epithelium lays down the primary stroma, an orthogonally arranged array of well-spaced, 20-nm-diameter collagen fibrils. (1) Isolated corneal epithelia will, when cultured, lay down de novo stromas whose fibril-diameter distribution, fibril spacing, and proteoglycan profile are similar to those laid down in vivo. They differ from embryonic stromas in two ways: first, much of the chondroitin sulfate is released to the medium and, second, there is a relatively small amount of orthogonal organization. Epithelia seem only to lay down such stromas if they are separated from their original stromas with dispase, which leaves an intact basal lamina, and spread out, basal lamina downward, on a Nuclepore filter (poresize, 0.1 micron). (2) Chondroitin sulfate (CS), the predominant proteoglycan (greater than 85%), seems to play no significant role in collagen fibrillogenesis in vitro. Stromas laid down in its absence were indistinguishable from controls as assayed by fibril diameter, organization, and spacing and the amount of collagen synthesized. For these experiments, epithelia were cultured in the presence of hyaluronidase, which degrades CS, and p-nitrophenyl beta-D-xyloside, which inhibits the formation of links between the core protein and glycosaminoglycan side chains in the PG; the absence of intact CS was confirmed by gel filtration. We suggest that, in vivo, CS may facilitate the interfibrillar movement that takes place as the cornea grows. We have also found that keratinase, which degrades the very small amount of keratan sulfate present in the primary stroma, has no effect on stromal deposition. (3) There are substantial amounts of unidentified matrix components in primary stromas laid down both in vivo and in vitro. This conclusion was drawn from SEM observations on both types of stroma after they had been freeze-dried, a process which does not condense hydrated macromolecules. Even after being treated with hyaluronidase to remove the CS, substantial amounts of interfibrillar matrix were still present. Until these components are identified and their interactions with collagen are understood, the mechanisms responsible for stromal morphogenesis are unlikely to be understood.  相似文献   

15.
We investigated the effect of interleukin 6 (IL-6) on the migration of rabbit corneal epithelium in vitro and on the attachment of dissociated corneal epithelial cells to a fibronectin matrix. When corneal blocks were cultured with IL-6 for 24 hours, the length of the path of epithelial migration over exposed corneal stroma increased significantly (p less than 0.005 at the concentration of 10 ng/ml) in proportion to the concentrations of IL-6 (0.1-10.0 ng/ml). The addition of antiserum against fibronectin or of GRGDSP abolished the stimulatory effect of IL-6 on epithelial migration. When corneal epithelial cells were cultured with various concentrations of IL-6, suspended, and plated on wells coated with fibronectin (10 micrograms/ml), the number of cells attached to the wells increased in a dose-dependent manner. The presence of antibody against fibronectin or of GRGDSP during the attachment assay decreased the number of cells attached to the fibronectin matrix, regardless of the fact that the cells had been cultured with IL-6 or not. IL-6 stimulated the attachment of corneal epithelial cells to collagen type IV and to laminin matrices. However, the presence of GRGDSP did not affect the cell attachment to collagen type IV and to laminin. These findings strongly indicate that IL-6 stimulates epithelial migration in the cornea by a fibronectin-dependent mechanism, presumably the increased expression of fibronectin receptors.  相似文献   

16.
Summary Corneal fibroblasts, also known as keratocytes are surrounded by an extracellular matrix of collagen in vivo. To understand the physiology and pathology of these corneal fibroblasts, it is important to study their interactions with this extracellular matrix. We cultured rabbit corneal fibroblasts on tissue culture plastic dishes or in a hydrated collagen gel and compared the changes in morphology and mitotic activity. Corneal fibroblasts on plastic dishes were flattened and widely spread, whereas those in collagen gel became spindle-shaped with long processes. Examination with an electron microscope revealed that the corneal fibroblasts in collagen gel formed gap junctions with neighboring cells. Gap junctions were hardly ever observed between corneal fibroblasts cultured on plastic dishes. Corneal fibroblasts cultured in a collagen matrix showed much less incorporation of [3H]thymidine than did corneal fibroblasts cultured on plastic, and this incorporation decreased with increasing concentration of collagen. Our present results suggest that the morphologic and biochemical characteristics of corneal fibroblasts cultured in collagen gel are different from those cultured on plastic. This research was supported in part by grants from the Ministry of Education, Science and Culture of Japan, by a grant from Osaka Eye Bank, Osaka, Japan, and by an intramural research fund of Kinki University. Part of this research was presented at the annual meeting of the Japanese Ophthalmological Society (May 1985) at Kyoto, Japan, and at the annual meeting of the Association for Research in Vision and Ophthalmology (May 1987) at Sarasota, FL.  相似文献   

17.
Extracellular matrix material (ECM) present during mouse lens morphogenesis was studied histologically by the periodic acid-Schiff, Alcian blue 8GX, pH 2.5, high iron diamine, and Van Gieson methods, and enzymatically with bovine testicular hyaluronidase, Streptomyces hyaluronidase, malt diastase, and collagenase. The basal lamina of the optic vesicle prior to lens placode formation was found to be higher in glycosaminoglycan (GAG) content than was the ectodermal basal lamina. Upon apposition of the optic vesicle and presumptive lens ectoderm, the ECM plus basal laminae appeared as the equivalent of adding both optic vesicle-associated and ectodermal-associated basal lamina. The proposal is made that the initial triggering mechanism of lens morphogenesis consists of a cross-linking and polymerization of optic vesicle-associated GAG to ectodermal-associated glycoproteins resulting in a firm attachment between the structures. Basal lamina associated with the presumptive pigmented retina and also the more ventral part of the interface matrix were found to change from predominantly GAG in early stages to collagen deposits in more advanced stages, temporally coinciding with the appearance of differentiative markers in each structure. This pattern of GAG turnover and replacement by collagen during the course of development is also seen in mouse salivary gland morphogenesis (M. R. Bernfield, S. D. Banerjee, and R. H. Cohn (1972). J. Cell Biol. 52, 674-686.).  相似文献   

18.
Human corneal fibroblasts (HCF) and corneal stromal stem cells (CSSC) each secrete and organize a thick stroma-like extracellular matrix in response to different substrata, but neither cell type organizes matrix on tissue-culture polystyrene. This study compared cell differentiation and extracellular matrix secreted by these two cell types when they were cultured on identical substrata, polycarbonate Transwell filters. After 4 weeks in culture, both cell types upregulated expression of genes marking differentiated keratocytes (KERA, CHST6, AQP1, B3GNT7). Absolute expression levels of these genes and secretion of keratan sulfate proteoglycans were significantly greater in CSSC than HCF. Both cultures produced extensive extracellular matrix of aligned collagen fibrils types I and V, exhibiting cornea-like lamellar structure. Unlike HCF, CSSC produced little matrix in the presence of serum. Construct thickness and collagen organization was enhanced by TGF-ß3. Scanning electron microscopic examination of the polycarbonate membrane revealed shallow parallel grooves with spacing of 200–300 nm, similar to the topography of aligned nanofiber substratum which we previously showed to induce matrix organization by CSSC. These results demonstrate that both corneal fibroblasts and stromal stem cells respond to a specific pattern of topographical cues by secreting highly organized extracellular matrix typical of corneal stroma. The data also suggest that the potential for matrix secretion and organization may not be directly related to the expression of molecular markers used to identify differentiated keratocytes.  相似文献   

19.
Summary Vaginal and uterine stromal (VS and UtS) cells have been cultured in a collagen gel matrix, and the ability of the cells to retain their identity and interact normally with epithelia after culture was examined. Stromal explant from 2-d-old mice were plated onto an extracellular matrix covered with collagen, and maintained in Ham’s F12∶DMEM (1∶1) containing 15% fetal bovine serum. The fibroblastic stromal cells invaded and eventually filled the overlying collagen during the 4-wk growth period, and the total DNA of the UtS and VS cultures increased 3.5- and 4-fold, respectively. To assess the ability of the cultured stroma to perform its normal functions after the in vitro period, recombinations of cultured stroma and fresh epithelia were preparaed and transplanted under the renal capsule of female hosts and grown for 4 wk. The epithelium in recombinants of cultured VS + vaginal epithelium (VE) and cultured UtS + uterine epithelium (UtE) was histologically normal and proliferated in response to estrogen. Cultured stroma also instructively induced heterologous epithelium; VS induced UtE to undergo vaginal differentiation, and UtS induced VE to undergo uterine differentiation. These results indicate that UtS and VS retain their identity and do not irreversibly dedifferentiate in culture. Stromal cells grown in a colagen gel matrix form a functional stroma; they interact normally with epithelium after culture and express normal permissive and instructive inductive functions when reassociated with epithelium and grown in vivo. This work was supported by grants HD 17491, AM/CA 16570, CA 05388, and 5 F32 HD06580 from the National Institute of Health, Bethesda, MD, and a grant from the UCSF Academic Senate.  相似文献   

20.
Role of lumican in the corneal epithelium during wound healing   总被引:7,自引:0,他引:7  
Lumican regulates collagenous matrix assembly as a keratan sulfate proteoglycan in the cornea and is also present in the connective tissues of other organs and embryonic corneal stroma as a glycoprotein. In normal unwounded cornea, lumican is expressed by stromal keratocytes. Our data show that injured mouse corneal epithelium ectopically and transiently expresses lumican during the early phase of wound healing, suggesting a potential lumican functionality unrelated to regulation of collagen fibrillogenesis, e. g. modulation of epithelial cell adhesion or migration. An anti-lumican antibody was found to retard corneal epithelial wound healing in cultured mouse eyes. Healing of a corneal epithelial injury in Lum(-/-) mice was significantly delayed compared with Lum(+/-) mice. These observations indicate that lumican expressed in injured epithelium may modulate cell behavior such as adhesion or migration, thus contributing to corneal epithelial wound healing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号