共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of rats with T 3 resulted in a significant decrease in body weight, while the heart weight increased. T 4 treatment had less marked effect on body weights but resulted in decreased heart weights. Serum T 4 levels decreased significantly with simultaneous increase of T 3 level following T 3 treatment, whereas with T 4 treatment, levels of both T 4 and T 3 increased in the serum. Low doses of T 3 (0.5 μg ) caused decrease in mitochondrial protein content while high dose of T 4 (1 μg), caused significant increase in mitochondrial mass. The state 3 respiration rates were significantly depressed following
T 3 and T 4 treatments, in a substrate specific manner with the effects being more pronounced with T 3; these responses with T 4 were dose-dependent for succinate and ascorbate + N,N,N′,N′-tetramethyl- p-phenylenedíamme. State 4 respiration rates also exhibited similar corresponding changes. ADP/O ratios were not changed but
ADP-phosphorylation rates were decreased significantly particularly so with the T 3-treated animals. Treatment with T 3 also resulted in lowering of intramitochondrial cytochrome contents. Similar effects were seen also with higher doses of
T 4. The results thus indicate that T 3- and T 4- thyrotoxicosis results in impaired energy metabolism in heart mitochondria. 相似文献
2.
Abstract The high energy costs of biological nitrogen fixation are partly caused by hydrogen production during the reduction of dinitrogen to ammonia. Some nitrogen-fixing organisms can recycle the evolved hydrogen via a membrane-bound uptake hydrogenase. The energetic aspects of hydrogen metabolism and nitrogen fixation are discussed. Studies on both isolated nitrogenase proteins and nitrogen-fixing chemostat cultures show that energy limitation will result in a high hydrogen production by nitrogenase. In plant- Rhizobium symbiosis, the supply of oxygen or photosynthetate is the limiting factor for nitrogen fixation. In both cases, nitrogen fixation is energy-limited, and it is concluded that a large amount of hydrogen is produced during nitrogen fixation in these symbioses. Hydrogen reoxidation yields less energy than the oxidation of endogenous substrates, and therefore expression of hydrogenase under oxygen-limited conditions is energetically unfavourable. Moreover, hydrogen reoxidation can never completely regain the energy invested during hydrogen production. The controversial reports of the effect of hydrogen reoxidation on the efficiency of nitrogen fixation are being discussed. The determination of the energy costs of nitrogen fixation (expressed as the amount of ATP needed to fix 1 mol of N 2) using chemostat cultures is described. Calculations show that the nitrogenase-catalysed hydrogen production has more influence on the efficiency of nitrogen fixation than the absence or presence of a hydrogen uptake system. 相似文献
3.
Energy metabolism in liver has to cope with the special tasks of this organ in intermediary metabolism. Main ATP-generating processes in the liver cell are the respiratory chain and glycolysis, whereas main ATP-consuming processes are gluconeogenesis, urea synthesis, protein synthesis, ATPases and mitochondrial proton leak. Mitochondrial respiratory chain in the intact liver cell is subject to control mainly by substrate (hydrogen donors, ADP, oxygen) transport and supply and proton leak/slip. Whereas hormonal control is mainly on substrate supply to mitochondria, proton leak/slip is supposed to play an important role in the modulation of the efficiency of oxidative phosphorylation. 相似文献
4.
Threonine is a precursor of glycine in the rat, but the metabolic pathway involved is unclear. To elucidate this pathway, the biosynthesis of glycine, and of aminoacetone, from l-threonine were studied in rat liver mitochondrial preparations of differing integrities. In the absence of added cofactors, intact mitochondria formed glycine and aminoacetone in approximately equal amounts from 20 mM l-threonine, but exogenous NAD + decreased and CoA increased the ratio of glycine to aminoacetone formed. In intact and freeze-thawed mitochondria, the ratio of glycine to aminoacetone formed was markedly sensitive to the concentration of l-threonine, glycine being the major product at low l-threonine concentrations. Disruption of mitochondrial integrity by sonication (1 min) decreased the ratio of glycine to aminoacetone formed, and in 20 000 × g supernatant fractions from sonicated (3 min) mitochondria, aminoacetone was the major product. The main non-nitogenous tow-carbon compound detected when intact mitochondria catabolized l-threonine to glycine was acetate, which was probably derived from deacylation of acetyl-CoA. These results suggest that glycine formation from l-threonine in rat liver mitochondria occured primarily by the coupled activities of threonine dehydrogenase and 2-amino-3-oxobutyrate CoA-ligase, the extent of coupling between the enzymes being dependent upon a close physical relationship and upon the flux through the dehydrogenase reaction. In vivo glycine synthesis would predominate, and aminoacetone would be a minor product. 相似文献
5.
In the heart of sugar-induced hypertriglyceridemic (HTG) rats, cardiac performance is impaired with glucose as fuel, but not with fatty acids. Accordingly, the glycolytic flux and the transfer of energy diminish in the HTG heart, in comparison to control heart. To further explore the biochemical nature of such alteration in the HTG heart, the components of the non-glycolytic energy systems involved were evaluated. Total creatine kinase (CK) activity in the myocardial tissue was depressed by 30% in the HTG heart whereas the activity of the mitochondrial CK (mitCK) isoenzyme fraction that is functionally associated with oxidative phosphorylation decreased in isolated HTG heart mitochondria by 45%. Adenylate kinase (AK) was 20% lower in the HTG heart. In contrast, respiratory rates with 2-oxoglutarate (2-OG) and pyruvate/malate (pyr) were significantly higher in HTG heart mitochondria than in control mitochondria. 2-OG dehydrogenase activity was also higher in HTG mitochondria. Respiration with succinate was similar in both groups. Content of cytochromes b, c + c1 and a + a3, and cytochrome c oxidase activity, were also similar in the two kinds of mitochondria. A larger content of saturated and monounsaturated fatty acids was found in the HTG mitochondrial membranes with no changes in phospholipids composition or cholesterol content. Mitochondrial membranes from HTG hearts were more rigid, which correlated with the generation of higher membrane potentials. As the mitochondrial function was preserved or even enhanced in the HTG heart, these results indicated that deficiency in energy transfer was associated with impairment in mitCK and AK. This situation brought about uncoupling between the site of ATP production and the site of ATP consumption (contractile machinery), in spite of compensatory increase in mitochondrial oxidative capacity and membrane potential generation. 相似文献
6.
The respiration rates and the respiratory control ratios of isolated rat liver mitochondria have been measured following exposure to 0–160 kJ/m 2 of near-ultraviolet radiation (blacklight) in the presence of low concentrations of porphyrins (0.1–0.2 μmol/l). Depending on the light dose, the concentration and the type of porphyrin, the following sequence of reactions occurred: uncoupling and inhibition of oxidative phosphorylation, energy dissipation, inhibition of respiration and swelling and disruption of the mitochondria. The detrimental effects could not be elicited in the absence of oxygen, neither could they be elicited by porphyrins or light alone. At equimolar concentrations, the effectiveness of the porphyrins as photosensitizers were: deuteroporphyrin > protoporphyrin coproporphyrin > murophorphyrin. The results may be of importance to explain the skin lesions seen when porphyrins of different hydrophobicity accumulate in the skin. 相似文献
7.
目的:探讨有氧运动对衰老大鼠骨骼肌线粒体能量代谢的影响。方法:将20只12月龄的雌性Wistar大鼠随机分为老年安静组(AC, n=10)及老年运动组(AE, n=10),另取10只2月龄的雌性Wistar大鼠为青年安静组(YC, n=10);安静组大鼠进行正常饲养,运动组大鼠进行坡度为5°,速度为15.2 m/min,第1天运动15 min、第2天运动30 min、从第3天开始每天运动45 min,每周6 d,共12周。12周后所有大鼠断头处死,取腓肠肌样本,差速离心法提取线粒体,测定SOD和GSH-Px活性、MDA含量、三羧酸循环限速酶(CS、ICD和α-KGDHC)活性及呼吸链酶复合体(RCCⅠ~Ⅳ)活性。结果:①与YC组相比,AC组骨骼肌线粒体SOD活性和MDA含量显著增加( P<0.05),CS和α-KGDHC活性均显著降低( P<0.05),RCCⅠ、RCCⅡ和RCCⅣ活性均显著下降( P<0.05),RCCⅢ活性显著升高( P<0.05);AE组骨骼肌线粒体SOD、GSH-Px活性和MDA含量均显著增加( P<0.01),CS、ICD和α-KGDHC活性均显著升高( P<0.01),RCCⅠ~Ⅳ活性均显著升高( P<0.01)。②与AC组相比,AE组骨骼肌线粒体SOD、GSH-Px活性均显著升高( P<0.05),MDA含量显著下降( P<0.05),CS、ICD、α-KGDHC和RCCⅠ~Ⅳ活性均显著升高( P<0.01)。结论:有氧运动可以提高老年大鼠骨骼肌线粒体抗氧化能力,降低脂质过氧化水平,提高三羧酸循环及呼吸链功能,促进线粒体能量代谢,延缓衰老过程中线粒体的退行性变化。 相似文献
8.
The effects of hexachlorobenzene treatment and simultaneous iron-overload on the iron and porphyrin content of rat liver and rat liver mitochondria have been examined. In order to assess damages to the mitochondrial membrane occuring with these treatments, the content of malondialdehyde and selected functional properties of mitochondria were compared with those from control animals. Prolonged intake of hexachlorobenzene (8 weeks) resulted in a striking increased level of porphyrins together with a moderate increase in iron concentration. Simultaneous administration of hexachlorobenzene and iron-dextran caused the porphyrin level to reach 25% of the amount induced by hexachlorobenzene alone. The iron concentrations in liver as well as in liver mitochondria are also decreased under these conditions, as compared to the effect of iron-dextran. In contrast, the effects of hexachlorobenzene combined with iron-dextran on mitochondrial oxidative phosphorylation and malondialdehyde content are greater than those of either hexachlorobenzene or iron-dextran. These data suggest that porphyrin accumulation per se causes little deleterious effect and that both agents administered together act synergistically in causing damage to the mitochondrial membrane. 相似文献
10.
The inhibitor of oxidative phosphorylation tri- n-butyltin chloride (TBTC) causes membrane damage and disintegration of isolated rat thymocytes at concentrations higher than 1 μM. From a concentration of 0.1 μM, TBTC disturbs energy metabolism as indicated by an increase in methylglucose uptake, glucose consumption and lactate production and by a decrease in cellular ATP levels. Over the same TBTC concentration range, the incorporation of DNA, RNA and protein precursors are markedly reduced. Moreover the production of cyclic AMP upon stimulation of the cells with prostaglandin E 1 is effectively inhibited. These effects cannot be explained by an inhibition of nucleoside kinase activity, amino acid uptake or adenylate cyclase activity. The effects of TBTC on macromolecular synthesis and cyclic AMP production are possibly due to a disturbance of the cellular energy state. 相似文献
11.
Mitochondria are the main cellular source of reactive oxygen species and are recognized as key players in several age‐associated disorders and neurodegeneration. Their dysfunction has also been linked to cellular aging. Additionally, mechanisms leading to the preservation of mitochondrial function promote longevity. In this study we investigated the proteomic and functional alterations in brain mitochondria isolated from mature (5 months old), old (12 months old), and aged (24 months old) mice as determinants of normal “healthy” aging. Here the global changes concomitant with aging in the mitochondrial proteome of mouse brain analyzed by quantitative mass‐spectrometry based super‐SILAC identified differentially expressed proteins involved in several metabolic pathways including glycolysis, the tricarboxylic acid cycle, and oxidative phosphorylation. Despite these changes, the bioenergetic function of these mitochondria was preserved. Overall, this data indicates that proteomic changes during aging may compensate for functional defects aiding in preservation of mitochondrial function. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD001370 ( http://proteomecentral.proteomexchange.org/dataset/PXD001370 ). 相似文献
12.
The relation between ATP production and adenine nucleotide metabolism was investigated in human platelets which were starved by incubation in glucose-free, CN ?-containing medium and subsequently incubated with different amounts of glucose. In the absence of mitochondrial energy production (blocked by CN ?) and glycogen catabolism (glycogen almost completely consumed during starvation), lactate production increased proportionally with increasing amounts of glucose. The generated ATP was almost completely consumed in the various ATP-consuming processes in the cell except for a fixed portion (about 7%) that was reserved for restoration of the adenylate energy charge. During the first 10 min after glucose addition, the adenine nucleotide pool remained constant. Thereafter, when the glycolytic flux, measured as lactate formation, was more than 3.5 μmol · min ?1 · 10 ?11 cells, the pool increased slightly by resynthesis from hypoxanthine-inosine and then stabilized; at a lower flux the pool decreased and metabolic ATP and energy charge declined to values found during starvation. Between moments of rising and falling adenylate energy charges, periods of about 10 min remained in which the charge was constant and ATP supply and demand had reached equilibrium. This enabled comparison between the adenylate energy charge and ATP regeneration velocity. A linear relation was obtained for charge values between 0.4 and 0.85 and ATP regeneration rates between 0.6 and 3.5 ATP equiv. · min ?1 · 10 ?11 cells. These data indicate that in starved platelets ATP regeneration velocity and energy charge are independent and that each appears to be subject to the availability of extracellular substrate. 相似文献
13.
Summary The uptake of deoxyguanosine by rat liver mitochondria was characterized. The process required an intact mitochondrial membrane and exhibited a dependence on added phosphate. Deoxyguanosine uptake was minimally influenced by Mg 2+ or Mn 2+, but Ca 2+ at concentrations above 0.5 mM were detrimental. Of the deoxynucleosides tested, only deoxyinosine inhibited the uptake of deoxyguanosine. The ribonucleoside guanosine was not observed to compete with its deoxynucleoside analog. Known inhibitors of nucleoside transport, cytochalasin B and NBMPR, did not block deoxyguanosine uptake, but the sulfhydryl reagents NEM and pCMB were both inhibitory. The uptake of deoxyguanosine was shown to be a saturable process and an apparent Km of 0.64 M was calculated from a Hanes plot. 相似文献
14.
Effects of treatment with DHEA (0.2 mg or 1.0 mg / kg body weight for 7 days) on oxidative energy metabolism on liver mitochondria from developing and young adult rats were examined. Treatment with DHEA resulted in a progressive dose-dependent increase in the liver weights of the developing animals without change in the body weight. In the young adult rats treatment with 1.0 mg DHEA showed increase only in the body weight. Treatment with DHEA stimulated state 3 and state 4~respiration rates in developing as well as young adult rats in dose-dependent manner with all the substrates used; magnitude of stimulation was age-dependent. In young adults the extent of simulation of state 3 respiration rates declined at higher dose (1.0~mg) of DHEA with glutamate and succinate as substrates. Stimulation of state 3 respiration rates was accompanied by increase in contents of cytochrome aa 3, b and c + c 1 and stimulation of ATPase and dehydrogenases activities in dose- and age-dependent manner. 相似文献
15.
Glutamate is involved in cerebral ischemic injury, but its role has not been completely clarified and studies are required to understand how to minimize its detrimental effects, contemporarily boosting the positive ones. In fact, glutamate is not only a neurotransmitter, but primarily a key metabolite for brain bioenergetics. Thus, we investigated the relationships between glutamate and brain energy metabolism in an in vivo model of complete cerebral ischemia of 15 min and during post‐ischemic recovery after 1, 24, 48, 72, and 96 h in 1‐year‐old adult and 2‐year‐old aged rats. The maximum rates (V max) of glutamate dehydrogenase (GlDH ), glutamate‐oxaloacetate transaminase, and glutamate‐pyruvate transaminase were assayed in somatic mitochondria (FM ) and in intra‐synaptic ‘Light’ mitochondria and intra‐synaptic ‘Heavy’ mitochondria ones purified from cerebral cortex, distinguishing post‐ and pre‐synaptic compartments. During ischemia, none of the enzymes were modified in adult animals. In aged ones, glutamate‐oxaloacetate transaminase was increased in FM and GlDH in intra‐synaptic ‘Heavy’ mitochondria, stimulating glutamate catabolism. During post‐ischemic recovery, FM did not show modifications at both ages while, in intra‐synaptic mitochondria of adult animals, glutamate catabolism was increased after 1 h of recirculation and decreased after 48 and 72 h, whereas it remained decreased up to 96 h in aged rats. These results, with those previously published about Krebs’ cycle and Electron Transport Chain (Villa et al ., [2013] Neurochem. Int . 63, 765–781), demonstrate that: (i) V max of energy‐linked enzymes are different in the various cerebral mitochondria, which (ii) respond differently to ischemia and post‐ischemic recovery, also (iii) with respect to aging. 相似文献
16.
The action of calcitonin on both the transport of calcium across the mitochondrial membrane and cellular respiration has been studied in the presence and absence of added phosphate. In the presence of phosphate, both the rate of calcium entry and the amount of calcium accumulated was stimulated by calcitonin, above a threshold concentration, in a saturable manner. In the absence of phosphate, calcitonin enhanced the rate of calcium entry, but had no appreciable effect on the levels of total calcium accumulated. The minimum concentration of calcitonin necessary to produce these effects was in all cases dependent on the external calcium concentration. Mitochondrial respiration was inhibited only at calcitonin levels much higher than those affecting calcium uptake. These results are consistent with the idea that the action of calcitonin is directly related to the mechanism of calcium uptake, and not to the respiratory process. 相似文献
17.
In the present study it was investigated if Vitamin A supplementation could protect rat kidney microsomes and mitochondria from in vitro lipoperoxidation. After incubation of rat kidney microsomes and mitochondria in an ascorbate-Fe ++ system, at 37°C during 60 min, it was observed that the total cpm/mg protein originated from light emission (chemiluminescence) was lower in those organelles obtained from the control group when compared with the vitamin A supplemented group. The fatty acid composition of microsomes and mitochondria from control group was profoundly modified when subjected to nonenzymatic lipoperoxidation with a considerable decrease of arachidonic acid, C20:4 (n-6) and docosapentaenoic acid, C22:5 (n–3) in mitochondria and docosahexaenoic acid C22:6 (n-3) in microsomes.As a consequence the peroxidizability index, a parameter based on the maximal rate of oxidation of specific fatty acids was higher in the supplemented animals than in those used as control. These results indicate that Vitamin A may act as antioxidant protecting rat kidney microsomes and mitochondria from deleterious effect. 相似文献
18.
This paper reviews top-down elasticity analysis, which is a subset of metabolic control analysis. Top-down elasticity analysis provides a systematic yet simple experimental method to identify all the primary sites of action of an effector in complex systems and to distinguish them from all the secondary, indirect, sites of action. In the top-down approach, the complex system (for example, a mitochondrion, cell, organ or organism) is first conceptually divided into a small number of blocks of reactions interconnected by one or more metabolic intermediates. By changing the concentration of one intermediate when all others are held constant and measuring the fluxes through each block of reactions, the overall kinetic response of each block to each intermediate can be established. The concentrations of intermediates can be changed by adding new branches to the system or by manipulating the activities of blocks of reactions whose kinetics are not under investigation. To determine how much an effector alters the overall kinetics of a block of reactions, the overall kinetic response of the block to the intermediate is remeasured in the presence of the effector. Blocks that contain significant primary sites of action will display altered kinetics; blocks that change rate only because of secondary alterations in the concentrations of other metabolites will not. If desired, this elasticity analysis can be repeated with the primary target blocks subdivided into simpler blocks so that the primary sites of action can be defined with more and more precision until, with sufficient subdivision, they are mapped onto individual kinetic steps. Top-down elasticity analysis has been used to identify the targets of effectors of oxygen consumption in mitochondria, hepatocytes and thymocytes. Effectors include poisons such as cadmium and hormones such as tri-iodothyronine. However, the method is more general than this; in principle it can be applied to any metabolic or other steady-state system. 相似文献
19.
The high-affinity binding site for [ 3H]Ro 5–4864 has been solubilized from rat kidney using 1% Triton X-100. After lowering the concentration of detergent and using a poly(ethylene glycol) γ-globulin assay, it has been possible to demonstrate solubilization of about 90% of the binding sites. A single soluble class of binding sites with a of 1.8 nM is found. The order of potency of benzodiazepines is identical for the solubilized receptor and the membrane-bound form. Gel filtration revealed a major peak of binding activity with apparent molecular weight of 215000 and a Stokes' radius of 5.03 nm. 相似文献
20.
Normal rat kidney contains primarily the L isozyme of adenylosuccinate synthetase. The increase in total adenylosuccinate synthetase activity that occures in response to NH 4Cl-feeding or a low potassium diet is mainly due to increase in the L isozyme, rather than to an increase in the M isozyme. 1 day after uninephrectomy there is little change in total adenylosuccinate synthetase activity or isozyme distribution in the remaining kidney. These results do not support extension to kidney of the theory proposed for liver that the L isozyme is involved in purine biosynthesis while the M isozyme is involved in ammonia production from amino acids via the purine nucleotide cycle. 相似文献
|