首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Eight dominant X-chromosome nondisjunction mutants have been identified and characterized. Hermaphrodites (XX) heterozygous for any one of the mutations produce 20–35% male (XO) self-progeny compared with the wild-type frequency of 0.2%. Seven of the eight mutants carry X-autosome translocations. Three of these, represented by mnT2, involve linkage group (LG) II and show severe crossover suppression for X-linked markers. The two half-translocations comprising mnT2 are separable and of very unequal size. The smaller one includes the left tip of X and the right end of LGII and can exist as a free duplication, being present in addition to the normal chromosome complement, in either hermaphrodites or males; it has no effect on X nondisjunction. The reciprocal half-translocation of mnT2 includes the bulk of both LGII and X chromosomes; it disjoins regularly from a normal LGII and confers the property of X-chromosome nondisjunction. A fourth translocation, mnT10(V;X), is also reciprocal and consists of half-translocations that recombine with V and X, respectively. Either half-translocation of mnT10 can exist in heterozygous form in the absence of the other to give heterozygous duplication-deficiency animals; the property of X-chromosome nondisjunction is conferred, in homozygotes as well as heterozygotes, solely by one of the half-translocations, which is deficient for the left tip of the X. The final three translocations have X breakpoints near the right end of X and autosomal breakpoints near the right end of LGIV, the left end of LGV and the right end of LGI, respectively. All three are homozygous inviable. Males hemizygous for the X portion of any of the seven translocations are viable and fertile. The final mutant, mn164, maps as a point at or near the left tip of the X and causes X-chromosome nondisjunction in both heterozygotes and homozygotes. In heterozygotes, mn164 promotes equational nondisjunction of itself but not its wild-type allele. The mutants are discussed in light of the holocentric nature of the C. elegans chromosomes. It is proposed that the left end of the X chromosome plays a critical structural role in the segregation of X chromosomes during meiosis in XX animals.  相似文献   

2.
Kennison JA 《Genetics》1981,98(3):529-548
Cytological and genetic analyses of 121 translocations between the Y chromosome and the centric heterochromatin of the X chromosome have been used to define and localize six regions on the Y chromosome of Drosophila melanogaster necessary for male fertility. These regions are associated with nonfluorescent blocks of the Y chromosome, as revealed using Hoechst 33258 or quinacrine staining. Each region appears to contain but one functional unit, as defined by failure of complementation among translocations with breakpoints within the same block. The distribution of translocation breakpoints examined appears to be nonrandom, in that breaks occur preferentially in the nonfluorescent blocks and not in the large fluorescent blocks.  相似文献   

3.
J. F. Leslie 《Genetica》1985,67(2):109-119
T(IIL; VL;IIR; VR) BLNC-1 is a compound chromosome rearrangement inNeurospora crassa that combines two reciprocal translocations:T(IIL; VL) AR30 which interchanges the left end of linkage group II with the left end of linkage group V, andT(IIR;VR) ALS154 which interchanges the right end of linkage group II with the right end of linkage group V.BLNC-1 acts as a crossover suppressor for most of both linkage groups II and V since single crossovers between the rearrangement breakpoints result in progeny with lethal unbalanced duplications and deficiencies. The integrity ofBLNC-1 following meiosis was tested in crosses of markedBLNC-1 by marked Normal sequence, with markers located at critical points on linkage groups II and V. Although recombination between distal markers in the four arms was reduced markedly, double crossovers in the long intervening regions occurred with a frequency of 21%. Of these double crossovers, most were coincidental crossovers, one in each of the long intervening regions, resulting in the resolution of the complex into its component rearrangements (16%), while a minority of the double crossovers (5%) were crossovers involving only one of the two component linkage groups, and resulted in the insertion of a segment between the breakpoints. - TheBLNC-1 balancer can be used for: (1) mapping new loci to linkage groups II and V, especially for identifying markers mapping near the tips of the linkage groups; (2) for isolating genetically intact chromosomes from natural populations or for quantitative genetic studies; and (3) for studying recombinational hot-spots which can be detected as escapes from crossover suppression. -Based on experience withBLNC-1, future two-chromosome balancers should be designed with two breakpoints near, but not at, the opposite ends of the chromosome to be balanced, and the other two breakpoints close to, but spanning, the centromere of a second chromosome. Such a construction when combined with appropriately placed selective markers should prevent breakdown of the complex, and should resemble an inversion in eliminating crossover products. Contribution no. 85-218-J from the Department of Plant Pathology, Kansas Agricultural Experiment Station, Kansas State University, Manhattan.  相似文献   

4.
Pedro Ripoll 《Genetics》1980,94(1):135-152
In Drosophila melanogaster, individuals heterozygous for translocations between chromosomes Y and 3 can generate, by means of mitotic recombination, somatic cells bearing duplications and deletions. Using translocations with different breakpoints, I have studied the behavior of clones of cells with increasing degrees of aneuploidy in the abdominal cuticle. Both hyper- and hypoploid cells can survive being duplicated or deficient even for large chromosome 3 fragments. While hyperploidy does not severely affect cell viability, the recovery of hypoploid clones decreases linearly as a function of the size of the deleted fragment. In this report, the quantitative and qualitative aspects of this effect are discussed.  相似文献   

5.
Bond DJ 《Genetics》1979,92(1):75-82
A chromosome rearrangement has been isolated and characterized in Sordaria brevicollis. Crosses to spore color mutants on each of the seven linkage groups have enabled the breakpoints to be mapped. The simplest hypothesis to account for the results is that a piece of linkage group VI has been translocated to linkage group V and inserted 2.7 map units from its centromere. Previous reports of markers on this linkage group with centromere distances greater than 2.7 units make it unlikely that the translocation is quasiterminal.  相似文献   

6.
Diploid strains of the yeast Saccharomyces cerevisiae homozygous for a recessive chromosome loss mutation (chl) exhibit a high degree of mitotic instability. Cells become monosomic for chromosome III at a frequency of approximately one percent of all cell divisions. Chromosome loss at this high frequency is also found for chromosome I, and at lesser frequencies for chromosomes VIII and XVI. In contrast, little or no chromosome loss is found for six other linkage groups tested (II, V, VI, VII, XI and XVII). The chl mutation also induces a ten-fold increase in both intergenic and intragenic mitotic recombination on all ten linkage groups tested. The chl mutation does not cause an increase in spontaneous mutations, nor are mutant strains sensitive to UV or γ irradiation. The effects of chl during meiosis are observed primarily in reduced spore viability. A decrease in chromosome III linkage relationships is also found.  相似文献   

7.
Summary Translocations with euchromatic breakpoints were generated in lethal-free autosomes of Drosophila melanogaster. Pairs of initially homozygous-lethal translocations, matched for one breakpoint, were allowed to recombine for ten generations. At the end of the experiment, 10/47=21% of crosses (representing 8/26=31% of the intial translocations) had at least one line with at least one homokaryotypic third-instar larva, detected among a small sample of salivary gland preparations from each cross. Among these ten crosses, chromosome extractions were performed; 5/10 of the crosses (probably representing 4/8 of the translocations) had at least one chromosome set with relative viability greater than 15%–25%. To a first (and conservative) approximation, 5/47=11% of crosses showed improvement of viability of 1 of the translocations in the cross during the controlled recombination regime; overall, 4 of the 26 translocations (15%) showed improvement of viability. Partly because of the conservative criterion of viability used, this figure is less than the 20% of translocations that theoretically should be improvable. Pseudohomokaryotypes (pairs of translocations with both breakpoints nearly matching) did not behave as very fit homokaryotypes. However, some of them generated viable hyperploid assortment products that might be of practical interest to mask deleterious effects at breakpoints of translocations. The improvement of fitness of at least a proportion of low fitness translocation stocks by the use of a controlled recombination procedure should be feasible for many pest species.  相似文献   

8.
The wheat spindle streak mosaic virus (WSSMV) or wheat yellow mosaic virus (WYMV) resistance gene, Wss1, from Haynaldia villosa, was previously mapped to the chromosome arm 4VS by the development of 4V (4D) substitution and T4DL·4VS translocation lines. For better utilization and more accurate mapping of the Wss1, in this research, the CS ph1b mutant was used to induce new translocations with shortened 4VS chromosome fragments. Thirty-five homozygous translocations with different alien fragment sizes and breakpoints of 4VS were identified by GISH and molecular marker analysis. By field test, it was found that all the identified terminal translocations characterized as having smaller 4VS chromosome segments in the chromosome 4DS were highly resistant to WYMV, while all the interstitial translocations with 4VS inserted into the 4DS were WYMV susceptible. Marker analysis using 32 4VS-specific markers showed that both the terminal and interstitial translocations had different alien fragment sizes. Five specific markers could be detected in the WYMV-resistant terminal translocation line NAU421 with the shortest introduced 4VS fragment, indicating they can be used for marker-assisted selection in wheat breeding. Based on the resistance evaluation, GISH and molecular marker analysis of the available translocations, the gene(s) conferring the WYMV resistance on 4VS could be further cytologically mapped to the distal region of 4VS, immersed in the bin of FL 0.78–1.00. The newly developed small fragment translocations with WYMV resistance and 4VS specific markers have laid solid groundwork for the utilization in wheat breeding for WYMV resistance as well as further cloning of Wss1.  相似文献   

9.
Eanes WF  Hey J  Houle D 《Genetics》1985,111(4):831-844
We report here a study of viability inbreeding depression associated with the X chromosome of Drosophila melanogaster. Fifty wild chromosomes from Mt. Sinai, New York, and 90 wild chromosomes from Death Valley, California, were extracted using the marked FM6 balancer chromosome and viabilities measured for homozygous and heterozygous females, and for hemizygous males, relative to FM6 males as a standard genotype. No statistically significant female genetic load was observed for either chromosome set, although a 95% confidence limit estimated the total load <0.046 for the samples pooled. About 10% of the Death Valley chromosomes appear to be "supervital" as homozygotes. There is little evidence for a pervasive sex-limited detrimental load on the X chromosome; the evidence indicates nearly identical viability effects in males and homozygous females excluding the supervital chromosomes. The average degree of dominance for viability polygenes is estimated between 0.23 to 0.36, which is consistent with autosomal variation and implies near additivity. We conclude that there is little genetic load associated with viability variation on the X chromosome and that the substantial reduction in total fitness observed for chromosome homozygosity in an earlier study may be due largely to sex-limited fertility in females.  相似文献   

10.

Key message

A male sterile transgenic rice plant TC-19 harboured a novel T-DNA integration in chromosome 8 with two interchromosomal translocations of 6.55 kb chromosome 3 and 29.8 kb chromosome 9 segments.

Abstract

We report a complex Agrobacterium T-DNA integration in rice (Oryza sativa) associated with two interchromosomal translocations. The T-DNA-tagged rice mutant TC-19, which harboured a single copy of the T-DNA, displayed male sterile phenotype in the homozygous condition. Analysis of the junctions between the T-DNA ends and the rice genome by genome walking showed that the right border is flanked by a chromosome 3 sequence and the left border is flanked by a chromosome 9 sequence. Upon further walking on chromosome 3, a chromosome 3/chromosome 8 fusion was detected. Genome walking from the opposite end of the chromosome 8 break point revealed a chromosome 8/chromosome 9 fusion. Our findings revealed that the T-DNA, together with a 6.55-kb region of chromosome 3 and a 29.8-kb region of chromosome 9, was translocated to chromosome 8. Southern blot analysis of the homozygous TC-19 mutant revealed that the native sequences of chromosome 3 and 9 were restored but the disruption of chromosome 8 in the first intron of the gene Os08g0152500 was not restored. The integration of the complex T-DNA in chromosome 8 caused male sterility.  相似文献   

11.
The cytologic positions (determined by G-banding) of the breakpoints on mouse chromosome 2 of a series of ten reciprocal translocations were compared with their most probable genetic positions on the linkage map, as determined by studies on recombination with known chromosome 2 (= linkage group V) markers. The most probable proximaldistal orders of the genetic and cytologic breakpoints were found to be the same; i.e., the two sets of breakpoints were colinear. However, there was no close correspondence between these two measures of the distance apart of adjacent breakpoints, since some translocation breaks which were well separated in G-band positions seemed close together in terms of the linkage map, and vice versa. This helps to confirm LYON'S conclusion that in certain mouse chromosomes, including No. 2, the distribution of chiasmata is nonrandom.  相似文献   

12.
Using amplification of marker sequences with DNA from a set of distinct microdissected Vicia faba L. chromosomes covering the entire genome, we could unambiguously show that the linkage group I.B, which includes the pseudogene of legumin B4 (ψ1) and was previously ascribed to the metacentric chromosome I, actually belongs to chromosome IV. By considering the breakpoints of the translocated BKH chromosomes III and IV, even the subchromosomal position of loci LG085 and CNGC4 could be inferred. Anchoring all linkage groups to distinct faba bean chromosomes will facilitate quantitative trait locus fine mapping and gene identification using synteny, and will boost the development of efficient markers for selection in breeding programs.  相似文献   

13.
Meats A  Maheswaran P  Frommer M  Sved J 《Genetica》2002,116(1):97-106
Flies that are homozygous for the recessive autosomal mutation bent wingshave a limited ability to fly and are less tolerant of high temperatures than normal flies in both the egg and puparial stages. The differences between the mutant and normal flies were found sufficient to be the basis of a genetic sexing strain. Genetic sexing strains were created using translocations of the autosome bearing the wild-type allele of bent wings(chromosome 2) to the Y chromosome, and crossing male flies carrying the translocation to mutant bent wingsfemales. In the resulting strain, the females were homozygous for the bent wingsmutation and the males were phenotypically normal for wing characters. Several translocations were recovered after irradiation, but only one translocation involving chromosome 2 was both stable and expressed in a stock that was vigorous enough for long-term viability. Unfortunately, all stocks containing the translocation showed high levels of temperature-dependent lethality, including, inexplicably, both males and females. Translocation stocks showing this effect included bent wings, another second chromosome mutation, white marks, and an otherwise normal stock. This phenomenon is probably rare, as it has not been reported before. It is likely that bent wingscould be suitably used with another translocation.  相似文献   

14.
 A genetic map was constructed from an F2 population of 76 individuals for the purpose of comparing the arrangement of loci in the A and E Solanum genomes. This progeny was derived from an interspecific cross between the species Solanum palustre×Solanum etuberosum, both of which are E-genome species. Two hundred and eighty one probes previously mapped in tomato and potato (A-genome, as postulated for diploid cultivated potato species by Matsubayashi 1991) disclosed 109 segregating loci in this population. Of these, 80 loci were linked in 19 linkage groups covering a total of 720.4 cM, with an average of 9 cM between markers. Although the genetic map of the E-genome showed conservation for most linkage groups with those of tomato and the A-genome, various translocations and possible inversions and transpositions were detected. It is evident that the accumulation of these structural changes in the E-genome is sufficient to cause the observed hybrid sterility. The major rearrangements in the E-genome included multiple translocations involving mosly linkage groups 2 and 8. Also a transposition was detected on group 9, with the same group-10 inversion distinguishing potato from tomato. Definitively groups 2, 8, 9 and 10, and possibly groups 1, 4 and 12, in the E-genome are structurally different from their homologues in the A-genome. In general, recombination values were larger in the E- than in the A-genome. The extensive structural differentiation of the E-genome with respect to that of potato and tomato justifies its present designation as a different genome, which is supported by previous chromosome-pairing studies. The difficult introgression of desirable traits from the Etuberosum species into potato can be explained by these structural differences. Received: 1 February 1998 / Accepted: 8 October 1998  相似文献   

15.
We describe a method for generation and maintenance of translocations that move large autosomal segments onto the Y chromosome. Using this strategy we produced (2;Y) translocations that relocate between 1.5 and 4.8 Mb of the 2nd chromosome.. All translocations were easily balanced over a male-specific lethal 1 (msl-1) mutant chromosome. Both halves of the translocation carry visible markers, as well as P-element ends that enable molecular confirmation. Halves of these translocations can be separated to produce offspring with duplications and with lethal second chromosome deficiencies . Such large deficiencies are otherwise tedious to generate and maintain.  相似文献   

16.
Salient features of the first meiotic division are independent segregation of chromosomes and homologous recombination (HR). In non-sexually reproducing, homozygous species studied to date HR is absent. In this study, we constructed the first linkage maps of homozygous, bivalent-forming Oenothera species and provide evidence that HR was exclusively confined to the chromosome ends of all linkage groups in our population. Co-segregation of complementary DNA-based markers with the major group of AFLP markers indicates that HR has only a minor role in generating genetic diversity of this taxon despite its efficient adaptation capability. Uneven chromosome condensation during meiosis in Oenothera may account for restriction of HR. The use of plants with ancient chromosomal arm arrangement demonstrates that limitation of HR occurred before and independent from species hybridizations and reciprocal translocations of chromosome arms-a phenomenon, which is widespread in the genus. We propose that consecutive loss of HR favored the evolution of reciprocal translocations, beneficial superlinkage groups and ultimately permanent translocation heterozygosity.  相似文献   

17.
R. E. Denell 《Genetics》1976,84(2):193-210
In their extensive analysis of the effects of segmental aneuploidy on development to the adult stage, Lindsley and Sandler et al. (1972) identified salivary chromosome region 83D-E as apparently uniquely dose-sensitive. Neither the hypoploid nor hyperploid classes appeared to survive to the adult stage, although segmental hyperploidy of all other regions of the genome is compatible with normal or quasi-normal development. In the present investigation, this genetic behavior is shown to be a concomitant of region 83D-E itself, and independent of the particular Y-autosome translocations utilized to generate aneuploid classes. Newly induced chromosomal duplications including 83D-E are recovered by their ability to complement the corresponding deficiency; these aberrations indicate that the phenomenon depends on genetic dosage per se and is independent of linkage relationships. Further tests involving the generation of large numbers of aneuploid zygotes support the conclusion that these individuals very rarely and possibly never survive to the adult stage. Finally, crosses yielding hypertriploid females and intersexes indicate that these aneuploids often survive and, in the former case, are fertile. No viable hypotriploid female or intersex was recovered.  相似文献   

18.
Repeated early embryonic loss (REEL) represents a considerable economic loss to the horse industry. Mares that experience REEL may be overlooked as potential carriers of a chromosome abnormality. Here we report three different autosomal translocations in Thoroughbred mares presented for chromosome analysis because of REEL. The karyotypes were 64,XX,t(1;21), 64,XX,t(16;22), and 64,XX,t(4;13), respectively. In order to confirm the chromosomes involved in the translocations, to map the breakpoints, and to determine if the translocations were reciprocal, genes surrounding the breakpoints were identified using existing maps and from the newly assembled horse genome sequence. Bacterial artificial chromosomes containing the genes of interest were identified and mapped to the translocation chromosomes by fluorescence in situ hybridization (FISH). FISH confirmed that the t(16;22) and t(4;13) translocations were reciprocal, while the t(1;21) was not. The breakpoints on horse chromosomes 1 and 16 appear to be the same or near breakpoints previously identified in translocations. These breakpoints are at the fusion boundary of human chromosomes 10 and 15 on horse chromosome 1 and at human chromosome 3p and 3q on horse chromosome 16. These sites may represent ancient breakpoints reused during equid evolution. Overall, chromosome abnormalities may have a greater influence on mare fertility than previously known. Thus, it is important to karyotype subfertile mares exhibiting REEL.  相似文献   

19.
A. Daniel 《Human genetics》1981,56(3):321-328
Summary The potential chromosomal imbalance in offspring of pericentric inversion heterozygotes can be evaluated by measuring (% of haploid autosomal length, % HAL) the chromosomal segments distal to the breakpoints in the inversion. These distal segments were measured in presently reported and published cases of pericentric inversions, divided into two ascertainment groups: (I) those ascertained through recombinant offspring and (II) those ascertained through balanced heterozygotes. The distal segments in group II inversions were significantly larger than those of group I, i.e., the potentially larger chromosomal imbalances were not observed in full-term offspring. These results are discussed in relation to the model of risk of abnormal offspring in the progeny of heterozygotes for structural rearrangements (the chromosome imbalance size-viability model). The mean distal segment sizes for group I and group II pericentric inversions were respectively not significantly different from the mean interchange segment size for a sample of reciprocal translocations divided into the same two ascertainment groups. It was concluded that the restrictions on the size (% HAL) of chromosomal imbalance in offspring surviving until term are similar whether this imbalance arises from reciprocal translocations or pericentric inversions.  相似文献   

20.
Regional control of nondisjunction of the B chromosome in maize   总被引:2,自引:0,他引:2       下载免费PDF全文
Lin BY 《Genetics》1978,90(3):613-627
Control of nondisjunction in the maize B chromosome was studied using a set of B-10 translocations. The study focused on the possible effect of the proximal region of the B long arm. The experimental procedure utilized a combination of a 10B chromosome from one translocation with a B10 from another translocation. The breakpoints of the two translocations were so located that combination of the two elements created a deletion in the proximal region of the B chromosome, but no deletion in chromosome 10. Two different types of deletions were established; one involved a portion of the euchromatic region and the other the entire heterochromatic portion comprising the distal half of the B long arm, except for the small euchromatic tip. Deletion of the heterochromatic portion did not exert any effect on nondisjunction. Deletions of different portions of the euchromatic region produce different responses. Some deletions resulted in typical B nondisjunctional activity; others resulted in the disappearance of this activity. It is concluded that a region within the euchromatic portion of the chromosome is critical for the nondisjunction of B chromosomes. Among 22 translocations with breakpoints in the euchromatic regions, three were proximal to the critical region, 16 were distal and the position of three others was not determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号