首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epidermal growth factor (EGF) stimulated the phosphorylation of connexin43 (Cx43) in WB cells as evidenced by the formation of multiple irnmunoreactive Cx43 proteins of higher molecular mass which were abolished by treatment with alkaline phosphatase. Phosphorylation of Cx43 occurred within 10 min of EGF stimulation, was sustained for 1 h, and was associated with almost complete inhibition of gap junctional communication in these cells. EGF-induced phosphorylation and communication inhibition were retained in cells pretreated with phorbol 12-myristate 13-acetate (PMA) to deplete protein kinase C. These results show that the EGF inhibition of communication is tightly linked to protein kinase C-independent phosphorylation of Cx43. Further, Cx43 phosphorylated in the presence of EGF did not react with phosphotyrosine antibodies and in 32Pi incorporation experiments was shown to contain only phosphoserine indicating that the tyrosine kinase activity of the EGF receptor was not directly involved.  相似文献   

2.
Epidermal growth factor (EGF) has been found to induce enhanced gap junctional intercellular communication (GJIC) in the human kidney epithelial cell line K7. This is in contrast to what is reported for other cell types, which all show decreased GJIC in response to EGF. In the present study it is shown that 12-O-tetradecanoylphorbol-13-acetate (TPA) and EGF induce similar phosphorylation pattern of the gap junction protein connexin43 (Cx43) in K7 cells, although their effects on GJIC are opposite. Tyrosine phosphorylation of a 42 kD protein was observed to be induced concomitantly with phosphorylation of Cx43. EGF was however found to induce only serine phosphorylation of Cx43, indicating that the tyrosine kinase activity of the EGF receptor was not directly affecting the gap junction protein. The 42 kD protein phosphorylated on tyrosine was identified to be a mitogen activated protein (MAP) kinase. Both EGF and TPA was found to activate MAP kinase in these cells. Phosphorylation of Cx43 and enhancement of GJIC in response to EGF occurred with difference in time course. Phosphorylation of Cx43 was completed within 15 min, while the enhanced GJIC appeared 2-3 h later. It is therefore possible that regulation of synthesis or transport of Cx43 is responsible for the increase in GJIC, rather than direct involvement of Cx43 phosphorylation. This is in support of our previous finding that protein synthesis is necessary for EGF induced upregulation of GJIC in K7 cells.  相似文献   

3.
Loss of connexin expression and/or gap junctional communication (GJC) has been correlated with increased rates of cell growth in tumor cells compared to their normal communication-competent counterparts. Conversely, reduced rates of cell growth have been observed in tumor cells that are induced to express exogenous connexins and re-establish GJC. It is not clear how this putative growth-suppressive effect of the connexin proteins is mediated and some data has suggested that this function may be independent of GJC. In mammalian cells that express v-Src, connexin43 (Cx43) is phosphorylated on Tyr247 and Tyr265 and this results in a dramatic disruption of GJC. Cells that express a Cx43 mutant with phenylalanine mutations at these tyrosine sites form functional gap junctions that, unlike junctions formed by wild type Cx43, remain functional in cells that co-express v-Src. These cells still appear transformed; however, it is not known whether their ability to maintain GJC prevents the loss of growth restraints that confine “normal” cells, such as the inability to grow in an anchorage-independent manner or to form foci. In these studies, we have examined some of the growth properties of cells with Cx43 gap junctions that remain communication-competent in the presence of the co-expressed v-Src oncoprotein.  相似文献   

4.
During the cell cycle, gap junction communication, morphology and distribution of connexin43 (Cx43)‐containing structures change dramatically. As cells round up in mitosis, Cx43 labeling is mostly intracellular and intercellular coupling is reduced. We investigated Cx43 distributions during mitosis both in endogenous and exogenous expressing cells using optical pulse‐chase labeling, correlated light and electron microscopy, immunocytochemistry and biochemical analysis. Time‐lapse imaging of green fluorescent protein (GFP)/tetracysteine tagged Cx43 (Cx43‐GFP‐4C) expressing cells revealed an early disappearance of gap junctions, progressive accumulation of Cx43 in cytoplasmic structures, and an unexpected subset pool of protein concentrated in the plasma membrane surrounding the midbody region in telophase followed by rapid reappearance of punctate plaques upon mitotic exit. These distributions were also observed in immuno‐labeled endogenous Cx43‐expressing cells. Photo‐oxidation of ReAsH‐labeled Cx43‐GFP‐4C cells in telophase confirmed that Cx43 is distributed in the plasma membrane surrounding the midbody as apparent connexons and in cytoplasmic vesicles. We performed optical pulse‐chase labeling and single label time‐lapse imaging of synchronized cells stably expressing Cx43 with internal tetracysteine domains through mitosis. In late telophase, older Cx43 is segregated mainly to the plasma membrane while newer Cx43 is intracellular. This older population nucleates new gap junctions permitting rapid resumption of communication upon mitotic exit.  相似文献   

5.
Abnormalities in cardiac gap junction expression have been postulated to contribute to arrhythmias and ventricular dysfunction. We investigated the role of cardiac gap junctions by generating a heart-specific conditional knock-out (CKO) of connexin43 (Cx43), the major cardiac gap junction protein. While the Cx43 CKO mice have normal heart structure and contractile function, they die suddenly from spontaneous ventricular arrhythmias. Because abnormalities in gap junction expression in the diseased heart can be focal, we also generated chimeric mice formed from Cx43-null embryonic stem (ES) cells and wildtype recipient blastocysts. Heterogeneous Cx43 expression in the chimeric mice resulted in conduction defects and depressed contractile function. These novel genetic murine models of Cx43 loss of function in the adult mouse heart define gap junctional abnormalities as a key molecular feature of the arrhythmogenic substrate and an important factor in heart dysfunction.  相似文献   

6.
Intercellular communication may be modulated by the rather rapid turnover and degradation of gap junction proteins, since many connexins have half-lives of 1–3 h. While several morphological studies have suggested that gap junction degradation occurs after endocytosis, our recent biochemical studies have demonstrated involvement of the ubiquitin–proteasome pathway in proteolysis of the connexin43 polypeptide. The present study was designed to reconcile these observations by examining the degradation of connexin43-containing gap junctions in rat heart-derived BWEM cells. After treatment of BWEM cells with Brefeldin A to prevent transport of newly synthesized connexin43 polypeptides to the plasma membrane, quantitative confocal microscopy showed the disappearance of immunoreactive connexin43 from the cell surface with a half-life of 1 h. This loss of connexin43 immunoreactivity was inhibited by cotreatment with proteasomal inhibitors (ALLN, MG132, or lactacystin) or lysosomal inhibitors (leupeptin or E-64). Similar results were seen when connexin43 export was blocked with monensin. After treatment of BWEM cells with either proteasomal or lysosomal inhibitors alone, immunoblots showed accumulation of connexin43 in both whole cell lysates and in a 1% Triton X-100-insoluble fraction. Immunofluorescence studies showed that connexin43 accumulated at the cell surface in lactacystin-treated cells, but in vesicles in BWEM cells treated with lysosomal inhibitors. These results implicate both the proteasome and the lysosome in the degradation of connexin43-containing gap junctions.  相似文献   

7.
Fibroblast growth factor-2 (FGF-2) confers acute, preconditioning-like cardiac resistance to ischemic injury in a protein kinase C (PKC)-dependent fashion. One of the downstream targets of PKC is the gap junction protein connexin-43 (Cx43). We thus examined the effects of FGF-2 on Cx43 phosphorylation at specific PKC sites in the adult heart. Rat hearts perfused ex vivo for 20 min with an FGF-2-containing solution displayed increased levels of phosphorylated 44-45 kDa Cx43, assessed by western blotting. In addition, FGF-2 significantly upregulated phosphorylation of the PKC target serines 262 and 368 on Cx43 at intercalated disks, assessed using phosphospecific antibodies in immunolocalization and western blotting assays. Our data show that FGF-2, administered by perfusion, can alter the phosphorylation status of Cx43 at cardiomyocyte intercalated disks, and suggest a link between phosphorylation of Cx43 at specific PKC sites and FGF-2 cardioprotection.  相似文献   

8.
Tumour cells often exhibit erratic cell growth, as well as decreased gap junctional intercellular communication (GJIC). C6 glioma cells are characterized by low levels of gap junction mRNA and protein, and decreased amounts of GJIC when compared with astrocytes. Previous work has shown that C6 glioma cells transfected with connexin43 (C6-Cx43) exhibit decreased proliferation in vivo and in vitro, as well as genes that are differentially expressed between these cells. In this study, RNA levels of two CCN (connective tissue growth factor [CTGF], Cyr61/Cef-10, nephroblastoma overexpressed [NOV]) gene family members are shown to be upregulated in C6-Cx43 cells: Cyr61 and Nov. Cyr61 has previously been shown to increase adhesion, migration and growth in many cell types, whereas NOV has growth suppressive capacities. Cyr61 RNA expression is shown here to respond to serum in quiescent cells in an immediate early gene fashion, independent of Cx43 expression. In contrast, Nov RNA levels remain constant, reflective of transfected Cx43 expression. Furthermore, confocal microscopy indicates that NOV colocalizes with Cx43 plaques at the cell membrane. These findings provide insight into the possible role of Nov and Cyr61 in tumour cells.  相似文献   

9.
Connexin-43(Cx43)-based gap junctional communication is transiently inhibited by certain G protein-coupled receptor agonists, including lysophosphatidic acid, endothelin and thrombin. Our previous studies have implicated the c-Src protein tyrosine kinase in mediating closure of Cx43 based gap junctions. Pervanadate, an inhibitor of protein tyrosine phosphatases, mimics activated Src in inhibiting Cx43 gap junctional communication, apparently by promoting tyrosine phosphorylation of the Cx43 C-terminal tail. However, the identity of the protein tyrosine phosphatase(s) that may normally prevent Src-induced gap junction closure is unknown. Receptor-like protein tyrosine phosphatases that mediate homotypic cell-cell interaction are attractive candidates. Here we show that receptor protein tyrosine phosphatase μ (RPTPμ) interacts with Cx43 in diverse cell systems. We find that the first catalytic domain of RPTPμ binds to Cx43. Our results support a model in which RPTPμ, or a closely related protein tyrosine phosphatase, interacts with the regulatory C-terminal tail of Cx43 to prevent Src-mediated closure of Cx43 gap junctional channels.  相似文献   

10.
为了探究表皮生长因子(EGF)对体外培养的精原干细胞增殖的调控作用及其作用机制.应用不连续Percoll梯度液和选择性贴壁法分离纯化精原干细胞,c-kit细胞免疫组化鉴定细胞,MTT法研究EGF对精原干细胞增殖的效应,再加入JAK-STAT信号通路特异性抑制剂AG490,探究EGF对精原干细胞增殖作用的可能机制.c-kit细胞免疫组化结果显示分离得到细胞为精原干细胞;MTT结果显示各实验组比对照组细胞数量均有显著增多(P0.01);与对照组相比,加入AG490组的活细胞数有显著下降(P0.01).实验结果表明EGF能够促进精原干细胞的增殖,并且可以通过JAK-STAT信号通路起作用.  相似文献   

11.
Connexin-43(Cx43)-based gap junctional communication is transiently inhibited by certain G protein-coupled receptor agonists, including lysophosphatidic acid, endothelin and thrombin. Our previous studies have implicated the c-Src protein tyrosine kinase in mediating closure of Cx43 based gap junctions. Pervanadate, an inhibitor of protein tyrosine phosphatases, mimics activated Src in inhibiting Cx43 gap junctional communication, apparently by promoting tyrosine phosphorylation of the Cx43 C-terminal tail. However, the identity of the protein tyrosine phosphatase(s) that may normally prevent Src-induced gap junction closure is unknown. Receptor-like protein tyrosine phosphatases that mediate homotypic cell-cell interaction are attractive candidates. Here we show that receptor protein tyrosine phosphatase μ (RPTPμ) interacts with Cx43 in diverse cell systems. We find that the first catalytic domain of RPTPμ binds to Cx43. Our results support a model in which RPTPμ, or a closely related protein tyrosine phosphatase, interacts with the regulatory C-terminal tail of Cx43 to prevent Src-mediated closure of Cx43 gap junctional channels.  相似文献   

12.
Connexin 43 (Cx43), a gap junction protein expressed in differentiated granulosa cells, is necessary for normal follicular development. Cx43 expression and regulation by epidermal growth factor (EGF) were characterized in immature rabbit granulosa cells. Cx43 mRNA was expressed in the granulosa cells of primary follicles, but was undetectable in primordial follicles. Abundant expression of Cx43 mRNA was maintained in the granulosa cells of growing follicles through maturity. Granulosa cells were isolated from early preantral follicles and maintained in monolayer cultures for 72 hr. After the first 24 hr of culture, they were maintained for 48 hr in serum-free medium supplemented with 0, 1, 5, or 10 ng/ml of mouse EGF. Granulosa cell proteins were isolated, solubilized, and evaluated for Cx43 by Western blot analysis using antibodies to rat Cx43. Relative amounts of Cx43 protein (both phosphorylated and nonphosphorylated) were increased (P < 0.05) by EGF in a dose-dependent manner. Northern blot analysis of RNA from cultured granulosa cells demonstrated increased amounts of Cx43 mRNA in the EGF treated cultures (10 ng EGF/ml) relative to controls (P < 0.03). In summary, Cx43 gap junctions are synthesized in granulosa cells following the onset of folliculogenesis in vivo and their expression is enhanced by EGF in vitro.  相似文献   

13.
14.
目的:研究表皮生长因子(Epidermal Growth Factor,EGF)及受体(Epidermal Growth Factor Receptor,EGFR)及在甲状腺肿瘤中的表达。方法:应用免疫组织化学法检测91例甲状腺病变组织中EGFR和EGF的表达情况。结果:结节性甲状腺肿、甲状腺腺瘤、分化型甲状腺癌标本中EGFR表达的阳性率分别为15%、25%、68.62%,EGF表达的阳性率分别为10%、15%、68.62%,其中EGFR、EGF在分化型甲状腺癌与其余两组间差异均有统计学意义(P<0.05)。EGFR和EGF在甲状腺乳头状癌中的表达与性别、年龄、肿瘤大小、淋巴结转移、临床分期等临床因素无明显相关。结论:EGF和EGFR的表达可作为鉴别甲状腺肿瘤良恶性的一个指标。  相似文献   

15.
Gap-junctional coupling among neurons is subject to regulation by a number of neurotransmitters including nitric oxide. We studied the mechanisms by which NO regulates coupling in cells expressing Cx35, a connexin expressed in neurons throughout the central nervous system. NO donors caused potent uncoupling of HeLa cells stably transfected with Cx35. This effect was mimicked by Bay 21-4272, an activator of guanylyl cyclase. A pharmacological analysis indicated that NO-induced uncoupling involved both PKG-dependent and PKG-independent pathways. PKA was involved in both pathways, suggesting that PKG-dependent uncoupling may be indirect. In vitro, PKG phosphorylated Cx35 at three sites: Ser110, Ser276, and Ser289. A mutational analysis indicated that phosphorylation on Ser110 and Ser276, sites previously shown also to be phosphorylated by PKA, had a significant influence on regulation. Ser289 phosphorylation had very limited effects. We conclude that NO can regulate coupling through Cx35 and that regulation is indirect in HeLa cells.  相似文献   

16.
Bone osteoblasts and osteocytes express large amounts of connexin (Cx) 43, the component of gap junctions and hemichannels. Previous studies have shown that these channels play important roles in regulating biological functions in response to mechanical loading. Here, we characterized the distribution of mRNA and protein of Cx43 in mechanical loading model of tooth movement. The locations of bone formation and resorption have been well defined in this model, which provides unique experimental systems for better understanding of potential roles of Cx43 in bone formation and remodeling under mechanical stimulation. We found that mechanical loading increased Cx43 mRNA expression in osteoblasts and bone lining cells, but not in osteocytes, at both formation and resorption sites. Cx43 protein, however, increased in both osteoblasts and osteocytes in response to loading. Interestingly, the upregulation of Cx43 protein by loading was even more pronounced in osteocytes compared to other bone cells, with an appearance of punctate staining on the cell body and dendritic process. Cx45 was reported to be expressed in several bone cell lines, but here we did not detect the Cx45 protein in the alveolar bone cells. These results further suggest the potential involvement of Cx43-forming gap junctions and hemichannels in the process of mechanically induced bone formation and resorption.  相似文献   

17.
p40, a Lactobacillus rhamnosus GG (LGG)-derived soluble protein, ameliorates intestinal injury and colitis, reduces apoptosis, and preserves barrier function by transactivation of the EGF receptor (EGFR) in intestinal epithelial cells. The aim of this study is to determine the mechanisms by which p40 transactivates the EGFR in intestinal epithelial cells. Here we show that p40-conditioned medium activates EGFR in young adult mouse colon epithelial cells and human colonic epithelial cell line, T84 cells. p40 up-regulates a disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) catalytic activity, and broad spectrum metalloproteinase inhibitors block EGFR transactivation by p40 in these two cell lines. In ADAM17-deficient mouse colonic epithelial (ADAM17−/− MCE) cells, p40 transactivation of EGFR is blocked, but can be rescued by re-expression with WT ADAM17. Furthermore, p40 stimulates release of heparin binding (HB)-EGF, but not transforming growth factor (TGF)α or amphiregulin, in young adult mouse colon cells and ADAM17−/− MCE cells overexpressing WT ADAM17. Knockdown of HB-EGF expression by siRNA suppresses p40 effects on transactivating EGFR and Akt, preventing apoptosis, and preserving tight junction function. The effects of p40 on HB-EGF release and ADAM17 activation in vivo are examined after administration of p40-containing pectin/zein hydrogel beads to mice. p40 stimulates ADAM17 activity and EGFR activation in colonic epithelial cells and increases HB-EGF levels in blood from WT mice, but not from mice with intestinal epithelial cell-specific ADAM17 deletion. Thus, these data define a mechanism of a probiotic-derived soluble protein in modulating intestinal epithelial cell homeostasis through ADAM17-mediated HB-EGF release, leading to transactivation of EGFR.  相似文献   

18.
19.
Cell-to-cell communication can be blocked by intracellular injections of antibodies raised against gap junction proteins, but the mechanism of channel obstruction is unknown. Binding to connexins could lead to a conformational change, interfere with regulatory domains or cause a steric hindrance. To address these questions, the effects on cell-to-cell communication of affinity purified polyclonal antibodies raised against peptides reproducing the intracellular sequences 5–17, 314–322 and 363–382 of rat connexin43 were investigated in cultured rat ventricular cells. The antibodies against sequence 363–382 were characterized by immunoblotting and immunocytochemistry. Characterization of antibodies 5–17 and 314–322 has been previously reported. In a first series of experiments, the effect on gap junctional communication was assessed by injecting a junction-permeant fluorescent dye into cells adjacent to one cell previously microinjected with antibodies. In a second series, junctional permeability was quantitatively determined on records of fluorescence recovery after the photobleaching of 6-carboxyfluorescein-loaded cells. Antibodies 5–17 marked a 43 kDa band on immunoblots, but did not immunolabel gap junctions and had no functional effect. Antibodies 314–322 recognized the 43 kDa protein and labeled the intercalated disks, but failed to interfere with junctional permeability. Antibodies to the nearby sequence 363–382, for which all immunospecific tests had been positive, caused a delayed diffusional uncoupling in 50% of the microinjected cells. It is suggested that the blocking of junctional communication by antibodies results from interference with a regulatory domain of the connexin. Received: 25 July 1995/Revised: 21 December 1995  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号