首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Efficient propagation of measles virus in suspension cultures.   总被引:1,自引:1,他引:0  
Suspension cultures of a human prostate cell line (MA160) supported abundant growth of the Edmonston strain of measles virus. The virus yields obtained with these suspension cultures (150 to 800 PFU/cell) were at least 20- to 100-fold higher than those frequently reported in the literature. Monolayer cultures of MA160 cells did not support a virus replication nearly as efficiently (progeny yield, 25 PFU/cell).  相似文献   

2.
Measles virus has been centrifuged on different density gradients. It sediments at densities of 1,20 g/cm3 in K-tartrate, of 1,18–1,21 g/cm3 in sucrose, 1,19–1,23 g/cm3 in CsCl and 1,19 g/cm3 in metrizamide gradients. Metrizamide reduced measles virus infectivity. In sucrose gradients sometimes more than one infectious peak was observed. Control Vero cells produced particles of the same densities as measles virus peaks. These peaks did contain actin as the major protein. The relevance of this finding in relation to the presence of actin in measles virus is discussed.  相似文献   

3.
Nine temperature-sensitive (ts) mutants of nonattenuated Edmonston strain measles virus were isolated from wild-type virus which was grown in the presence of 5-fluorouracil. Adsorption, temperature shift, and complementation experiments indicated that all these mutants were restricted at an intracellular stage of infection. However, all the mutants were more rapidly inactivated at 41 C than was wild-type virus, suggesting that the ts product of each mutant either influences or is a structural component of the virus. Three complementation groups were found to be represented among the mutants. Group A contained one mutant and it did not induce synthesis of detectable amounts of viral antigen at the nonpermissive temperature (39 C). Group B consisted of six mutants which did not induce viral antigen synthesis at 39 C and one mutant which did. Group C was represented by one mutant and it induced viral antigen synthesis at 39 C. The two mutants which induced sythesis of viral antigen also induced synthesis of relatively small amounts of virus-specific RNA at 39 C. These mutants, while producing cytoplasmic and nuclear accumulations of viral antigen at 39 C, were restricted in production of syncytia and hemadsorption. All the mutants were less neurovirulent than wild-type virus, as indicated by their inability to produce acute disease in newborn hamsters.  相似文献   

4.
M V Haspel  R Duff    F Rapp 《Journal of virology》1975,16(4):1000-1009
Twenty-four genetically stable temperature-sensitive mutants of measles virus were isolated after mutangenesis by 5-azacytidine, 5 fluorouracil, or proflavine. The restricted replication of all mutants at 39 C was blocked subsequent to cell penetration and could not be attributed to heat inactivation of virus infectivity. Complementation analysis was made possible through the use of poly-L-ornithine. The members of one complementation group exhibited wild-type RNA synthesis at the nonpermissive temperature and induced the synthesis of virus antigens. These mutants were found defective in both hemolysin antigen synthesis and cell fusion "from within," supporting the unitary hypothesis for these functions. The members of the other two complementation groups synthesized neither virion RNA nor detectable virus antigens at the nonpermissive temperature.  相似文献   

5.
Summary Measles is one of widely spread virus infections that is a major cause of deaths in some tropical areas. The measles virus is a member of the genus of Morbillivirus of the family of Paramyxoviridae. The virions contain six polypeptides, including one glycoprotein; two of them are surface proteins that possess hemagglutinating and hemolytic activities, one of them is polymerase. Replication of the measles virus is similar to that of other Paramyxoviruses. Besides the acute infection for measles virus a persistent infection is characteristic that affects central nervous system and inner organs. Molecular mechanisms of it were studied and the results are discussed to explain the pathogenesis of subacute sclerosing panencephalitis, systemic lupus erythematosus and other diseasis in which measles or measles-like virus may be involved.  相似文献   

6.
Mice were immunized with measles virus to determine whether an auto-anti-idiotypic antireceptor response could be generated as a probe for measles virus receptors. Mice initially responded to viral antigens (days 11 to 18) and subsequently developed antibodies to a putative measles virus receptor (peak at day 30 to 35) by three criteria: the sera (1) agglutinated erythrocytes which virus agglutinates, (2) reacted with Vero cells, and (3) inhibited virus attachment to Vero cells. Additionally, select sera inhibited virus infection of Vero cells. The cell-reactive activity was identified as immunoglobulin G antibody and was neutralized by sera reacting with virus (idiotype). The application of this anti-idiotypic antibody to identify measles virus-binding sites on Vero cells was revealed by the ability of sera to immunoprecipitate 20- and 30.5-kilodalton proteins from metabolically labeled ([35S]methionine) Vero cells.  相似文献   

7.
J M Rice  D A Wolff 《Microbios》1978,18(73-74):179-188
A productive measles virus persistent infection has been established in HEp-2 cells. Greater than 90% of the persistently infected HEp-2 cells (H2MV) exhibited measles specific immunofluorescence and haemadsorption. Although most of the H2MV cells contained measles specific antigens, only a small percentage (less than 1%) actually produced infectious measles virus as determined by infectious centre assays. The measles virus produced by H2MV cells exhibited properties different from the initiating parent Edmonston strain virus, being reduced in virulence and also temperature sensitive for replication at 39 degrees C. The role of these altered virus properties in the establishment of persistence is considered.  相似文献   

8.
In herpes simplex virus type 1-infected Vero cells, reorganization of microfilaments was observed approximately 4 h postinfection. Conversion of F (filamentous) actin to G (globular) actin, as assessed by a DNase I inhibition assay, was continuous over the next 12 to 16 h, at which time a level of G actin of about twice that observed in uninfected cells was measured. Fluorescent localization of F actin, using 7-nitrobenz-2-oxa-1,3-diazole (NBD)-phallacidin, demonstrated that microfilament fibers began to diminish at about 16 to 18 h postinfection, roughly corresponding to the time that G actin levels peaked and virus-induced cytopathology was first observable. In measles virus-infected cells, no such disassembly of microfilaments occurred. Rather, there was a modest decrease in G actin levels. Fluorescent localization of F actin showed that measles virus-infected Vero cells maintained a complex microfilament network characterized by fibers which spanned the entire length of the newly formed giant cells. Disruption of microfilaments with cytochalasin B, which inhibits measles virus-specific cytopathology, was not inhibitory to measles virus production at high multiplicities of infection (MOI) but was progressively inhibitory as the MOI was lowered. The carbobenzoxy tripeptide SV-4814, which inhibits the ability of Vero cells to fuse after measles virus infection, like cytochalasin B, inhibited measles virus production at low MOI but not at high MOI. Thus, it appears that agents which affect the ability of Vero cells to fuse after measles virus infection may be inhibitory to virus production and that the actin network is essential to this process.  相似文献   

9.
Replication of Edmonston strain measles virus was studied in several human lymphoblast lines, as well as in defined subpopulations of circulating human leukocytes. It was found that measles virus can productively infect T cells, B cells, and monocytes from human blood. These conclusions were derived from infectious center studies on segregated cell populations, as well as from ultrastructural analyses on cells labeled with specific markers. In contrast, mature polymorphonuclear cells failed to synthesize measles virus nucleocapsids even after infection at a relatively high multiplicity of infection. Measles virus replicated more efficiently in lymphocytes stimulated with mitogens than in unstimulated cells. However, both phytohemagglutinin and pokeweed mitogen had a negligible stimulatory effect on viral synthesis in purified populations of monocytes. In all instances the efficiency of measles virus replication by monocytes was appreciably less than that of mitogenically stimulated lymphocytes or of continuously culture lymphoblasts. Under standard conditions of infection, all of the surveyed lymphoblast lines produced equivalent amounts of measles virus regardless of the major histocompatibility (HL-A) haplotype. Hence, no evidence was found that the HL-A3,7 haplotype conferred either an advantage or disadvantage with respect to measles virus synthesis in an immunologically neutral environment. A persistent infection with measles virus could be established in both T and B lymphoblasts. The release of infectious virus from such persistently infected cells was stable over a period of several weeks and was approximately 100-fold less than peak viral titers obtained in each respective line after acute infection.  相似文献   

10.
Two sets of independently isolated measles virus temperature-sensitive mutants were quantitatively tested for complementation. Analysis of the nine possible combinations of representative mutants indicated that only one pair of mutants is noncomplementing. Thus, the measles virus mutants studied to date define five complementation groups.  相似文献   

11.
T C Wong  M Ayata  S Ueda    A Hirano 《Journal of virology》1991,65(5):2191-2199
We identified an acute measles virus (Nagahata strain) closely related to a defective virus (Biken strain) isolated from a patient with subacute sclerosing panencephalitis (SSPE). The proteins of Nagahata strain measles virus are antigenically and electrophoretically similar to the proteins of Edmonston strain measles virus. However, the nucleotide sequence of the Nagahata matrix (M) gene is significantly different from the M genes of all the acute measles virus strains studied to date. The Nagahata M gene is strikingly similar to the M gene of Biken strain SSPE virus isolated several years later in the same locale. Eighty percent of the nucleotide differences between the Nagahata and Biken M genes are uridine-to-cytosine transitions known as biased hypermutation, which has been postulated to be caused by a cellular RNA-modifying activity. These biased mutations account for all but one of the numerous missense genetic changes predicted to cause amino acid substitutions. As a result, the Biken virus M protein loses conformation-specific epitopes that are conserved in the M proteins of Nagahata and Edmonston strain acute measles viruses. These conformation-specific epitopes are also absent in the cryptic M proteins encoded by the hypermutated M genes of two other defective SSPE viruses (Niigata and Yamagata strains). Nagahata-like sequences are found in the M genes of at least five other SSPE viruses isolated from three continents. These data indicate that Biken strain SSPE virus is derived from a progenitor closely resembling Nagahata strain acute measles virus and that biased hypermutation is largely responsible for the structural defects in the Biken virus M protein.  相似文献   

12.
G Ju  M Birrer  S Udem    B R Bloom 《Journal of virology》1980,33(3):1004-1012
Human lymphoblastoid cell lines persistently infected with measles virus release a heterogeneous population of virions. At least 80% of the infectious particles were temperature sensitive for plaque formation at 39 degrees C. Plaque-purified temperature-sensitive mutants from four persistently infected human lymphoblastoid cell lines were shown to be heterogeneous with respect to efficiency of plating at 31 and 39 degrees C, as well as to antigen and RNA production at 39 degrees C. The heterogeneity was confirmed by complementation analysis in which 21 temperature-sensitive isolates were found to represent at least four of the five previously described complementation groups of measles virus. Two isolates complemented four reference temperature-sensitive mutants. These isolates either represent new complementation groups or are members of the fifth complementation group, group E. The majority of isolates were found to have multiple mutations, and group B mutants (RNA-) predominated. Two temperature-sensitive isolates were able to interfere with production of parental measles virus at both permissive and nonpermissive temperatures.  相似文献   

13.
Hamster embryo fibroblasts persistently infected with a derivative of the Schwarz vaccine strain of measles virus spontaneously released virus particles with an average buoyant density considerably lower than that of the parental virus. The released virus contained all of the measles virus structural proteins and interfered with replication of standard virus. All of the virus structural proteins were associated with a membrane-free cytoplasmic extract from the persistently infected cells. Membrane-free cytoplasmic extracts prepared from Vero cells lytically infected with Schwarz strain measles contained little or no virus envelope structural protein. Maintenance of persistent infection may involve both the presence of virus variants and a defect in the ability of the infected cell to replicate the virus efficiently.  相似文献   

14.
A stable temperature-sensitive mutant of measles virus (MV ts38) was used to study the mechanism of virus-mediated immune suppression of peripheral blood mononuclear cells in vitro. Both unstimulated and phytohemagglutinin-stimulated cultures released infectious virus at 32 degrees C, whereas no virus was released at 37 degrees C, although both viral RNA and viral proteins were synthesized. However, the response of the lymphoid cells to phytohemagglutinin, concanavalin A, and herpes simplex virus antigen was decreased in the presence of MV ts38 at 37 degrees C. The viability of infected cells was not diminished, therefore excluding cell death as a reason for immunosuppression. Interleukin 2 did not play a role in the inhibitory effect of MV ts38. Antibodies to alpha interferon partially reversed the inhibitory effect of the virus infection on lymphocyte mitogenesis, thus implying that alpha interferon plays a role in the immunosuppression. Depletion experiments indicated that adherent cells play a greater role in the measles virus-induced immunosuppression than nonadherent cells. However, monocyte maturation to macrophages had no effect on the degree of immunosuppression.  相似文献   

15.
Antibodies specific for measles virus could redistribute ("cap") virus antigens on infected HeLa cells as shown by transmission and scanning electron microscopy. Using an indirect immunoperoxidase technique, infected cells showed diffuse, circumferential distribution of virus antigens over the cell surface when mixed with antibody at 4 C. At 37 C, virus-coated microvilli concentrated on one pole of the cell, leaving the remainder of the plasma membrane devoid of both viral antigens and microvillus projections. Whereas extreme polar displacement of virus-antibody complexes frequently occurred, endocytosis was rarely seen. The findings indicate that antiviral antibodies can move and cluster virus on plasma membranes and suggest that virus-antibody complexes are stripped and shed from the cell surface.  相似文献   

16.
The biological activity of monoclonal antibodies specific for the hemagglutinin protein of measles virus strain CAM recognizing six epitope groups according to their binding properties to measles virus strain CAM/R401 was investigated in vivo in our rat model of measles encephalitis. When injected intraperitoneally into measles virus-infected suckling rats, some monoclonal antibodies modified the disease process and prevented the necrotizing encephalopathy seen in untreated animals. The analysis of measles virus brain isolates revealed emergence of variants that resisted neutralization with the passively transferred selecting monoclonal antibody but not with other monoclonal antibodies. Monoclonal antibody escape mutants were also isolated in vitro, and their neurovirulence varied in the animal model. Sequence data from the hemagglutinin gene of measles virus localize a major antigenic surface determinant of the hemagglutinin protein between amino acid residues 368 and 396, which may be functionally important for neurovirulence. The data indicate that the interaction of antibodies with the measles virus H protein plays an important role in the selection of neurovirulent variants. These variants have biological properties different from those of the parent CAM virus.  相似文献   

17.
We report an analysis of the interaction between the P protein and the RNA-associated N protein (N-RNA) for both measles and mumps viruses with proteins produced in a bacterial expression system. During this study, we verified that the C-terminal tail of the N protein is not required for nucleocapsid formation. For both measles and mumps virus N, truncated proteins encompassing amino acids 1 to 375 assemble into nucleocapsid-like particles within the bacterial cell. For measles virus N, the binding site for the P protein maps to residues 477 to 505 within the tail of the molecule, a sequence relatively conserved among the morbilliviruses. For mumps virus N, a binding site for the P protein maps to the assembly domain of N (residues 1 to 398), while no strong binding of the P protein to the tail of N was detected. These results suggest that the site of attachment for the polymerase varies among the paramyxoviruses. Pulldown experiments demonstrate that the last 50 amino acids of both measles virus and mumps virus P (measles virus P, 457 to 507; mumps virus P, 343 to 391) by themselves constitute the nucleocapsid-binding domain (NBD). Spectroscopic studies show that the NBD is predominantly alpha-helical in both viruses. However, only in measles virus P is the NBD stable and folded, having a lesser degree of tertiary organization in mumps virus P. With isothermal titration calorimetry, we demonstrate that the measles virus P NBD binds to residues 477 to 505 of measles virus N with 1:1 stoichiometry. The dissociation constant (K(d)) was determined to be 13 microM at 20 degrees C and 35 microM at 37 degrees C. Our data are consistent with a model in which an alpha-helical nucleocapsid binding domain, located at the C terminus of P, is responsible for tethering the viral polymerase to its template yet also suggest that, in detail, polymerase binding in morbilliviruses and rubulaviruses differs significantly.  相似文献   

18.
Rustigian, Robert (Tufts University School of Medicine, Boston, Mass.). Persistent infection of cells in culture by measles virus. I. Development and characteristics of HeLa sublines persistently infected with complete virus. J. Bacteriol. 92:1792-1804. 1966.-After the development of marked cytopathic effects in HeLa cultures infected with the Edmonston strain of measles virus, renewed cell growth occurred, and HeLa sublines persistently infected with measles virus were obtained. Persistent infection has occurred in a large fraction of the cells of infected clonal lines for more than 300 to 500 cell generations during a period of 6 years. One mechanism by means of which infection was maintained in the clonal lines is transmission of virus or viral subunits from cell to cell at division. Continued subculture of the persistently infected populations resulted in the virtual disappearance of cytopathic effects, a marked decrease in the amount of extracellular virus, and alterations in the cytopathogenicity of virus recovered from persistently infected populations. The intracellular virus-host cell events in late passages of the infected clonal lines appeared to be similar to those in cells of primary infected cultures at early stages of infection, as judged by the pattern of viral immunofluorescence and the very low incidence of cells with intranuclear inclusion bodies. Cultures of the persistently infected clonal lines were highly resistant to super infection by parent Edmonston virus. Cultures of one of these clonal lines were just as susceptible as normal HeLa cultures to vaccinia, herpes simplex, and polio type 2 viruses, and a simian agent, with a possible low degree of resistance to the simian agent.  相似文献   

19.
Infectious measles virus from cloned cDNA.   总被引:12,自引:1,他引:11  
  相似文献   

20.
Immune precipitation of 181 sera from 152 patients with natural measles was studied to determine the temporal course and frequency of antibody responses to nucleocapsid, fusion, hemagglutinin, and matrix proteins of measles virus. Large amounts of antibody to nucleocapsid protein developed in all patients by day one of the rash. Antibody to hemagglutinin and fusion proteins developed in all patients over the next 3 weeks, the former to high levels and the latter to low levels. Antibody to matrix protein developed to very low levels and was detectable in only 41% of the patients; this poor response to matrix protein was not correlated with the age of the patient or the acute neurological complications of measles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号