首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Restriction fragment analysis was used to examine the inheritance of lentil mitochondrial DNA (mtDNA) in F1 and F5 progeny from intrasubspecific (Lens culinaris ssp. culinaris) crosses and in F1 progeny from intersubspecific (Lens culinaris ssp. orientalis x L. culinaris ssp. culinaris) crosses. Southern blots of digested parental and progeny DNA were hybridized to heterologous maize mtDNA probes specific to coxI and atp6 genes. Two restriction fragment polymorphisms separated L.c. ssp. culinaris Laird and Eston from L.c. ssp. culinaris ILL5588, and one restriction fragment polymorphism distinguished L.c. ssp. culinaris Laird and Eston from L.c. ssp. orientalis LO4. Twelve of 13 f1 progeny and all F5 progeny from the intrasubspecific crosses, and all F1 progeny from intersubspecific crosses had only maternal mtDNA restriction fragments. One f1 plant from an Eston x ILL5588 cross inherited mtDNA fragments from both parents. Nuclear DNA inheritance was biparental in all F1 progeny.NRCC No. 38451  相似文献   

2.
Summary Thirty accessions of domesticated (Lens culinaris ssp. culinaris) and wild (L. culinaris ssp. orientalis, L. culinaris ssp. odemensis, L. nigricans ssp. ervoides and L. nigricans ssp. nigricans) lentil were evaluated for restriction fragment length polymorphisms (RFLPs) using ten relative low-copy-number probes selected from partial genomic and cDNA libraries of lentil. Nei's average gene diversity was used as a measure of genetic variability for restriction fragment lengths within subspecies and a dendrogram was constructed from genetic distance estimates between subspecies. The wild lentils L. culinaris ssp. orientalis and L. culinaris ssp. odemensis showed the greatest variability for restriction fragment lengths and were closely positioned to domesticated lentil in the dendrogram. Little variability for restriction fragment lengths was observed within accessions of L. nigricans ssp. ervoides and L. nigricans ssp. nigricans. This observation is consistent with a previously published proposal that nigricans may have been independently domesticated. Estimates of genetic variability based on RFLPs tended to be greater than estimates from isozymes.  相似文献   

3.
A restriction-site analysis of chloroplast DNA (cpDNA) variation in Lens was conducted to: (1) assess the levels of variation in Lens culinaris ssp. culinaris (the domesticated lentil), (2) identify the wild progenitor of the domesticated lentil, and (3) construct a cpDNA phylogeny of the genus. We analyzed 399 restriction sites in 114 cultivated accessions and 11 wild accessions. All but three accessions of the cultivar had identical cpDNAs. Two accessions exhibited a single shared restriction-site loss, and a small insertion was observed in the cpDNA of a third accession. We detected 19 restriction-site mutations and two length mutations among accessions of the wild taxa. Three of the four accessions of L. culinaris ssp. orientalis were identical to the cultivars at every restriction site, clearly identifying ssp. orientalis as the progenitor of the cultivated lentil. Because of its limited cpDNA diversity, we conclude that either the cultivated lentil has passed through a genetic bottleneck during domestication and lost most of its cytoplasmic variability or else was domesticated from an ancestor that was naturally depauperate in cpDNA restriction-site variation. However, because we had access to only a small number of populations of the wild taxa, the levels of variation present in ssp. orientalis can only be estimated, and the extent of such a domestication bottleneck, if applicable, cannot be evaluated. The cpDNA-based phylogeny portrays Lens as quite distinct from its putative closest relative, Vicia montbretii. L. culinaris ssp. odemensis is the sister of L. nigricans; L. culinaris is therefore paraphyletic given the current taxonomic placement of ssp. odemensis. Lens nigricans ssp. nigricans is by far the most divergent taxon of the genus, exhibiting ten autapomorphic restriction-site mutations.  相似文献   

4.
Summary The inheritance of chloroplast (cp) DNA was examined in F1 hybrid progenies of two Populus deltoides intraspecific controlled crosses and three P. deltoides × P. nigra and two P. deltoides × P. maximowiczii interspecific controlled crosses by restriction fragment analysis. Southern blots of restriction digests of parental and progeny DNAs were hybridized to cloned cpDNA fragments of Petunia hybrida. Sixteen enzymes and five heterologous cpDNA probes were used to screen restriction fragment polymorphisms among the parents. The mode of cpDNA inheritance was demonstrated in progenies of P. deltoides × P. nigra crosses with 26 restriction fragment polymorphisms of cpDNA differentiating P. deltoides from P. nigra, as revealed by 12 enzyme-probe combinations, and in progenies of P. deltoides × P. maximowiczii crosses with 12 restriction fragment polymorphisms separating P. deltoides from P. maximowiczii, as revealed by 7 restriction enzyme-probe combinations. In all cases, F1 offspring of P. deltoides × P. nigra and P. deltoides × P. maximowiczii crosses had cpDNA restriction fragments of only their maternal P. deltoides parent. The results clearly demonstrated uniparental-maternal inheritance of the chloroplast genome in interspecific hybrids of P. deltoides with P. nigra and P. maximowiczii. Intraspecific P. deltoides hybrids also had the same cpDNA restriction fragments as their maternal parent. Maternal inheritance of the chloroplast genome in Populus is in agreement with what has been observed for most other angiosperms.  相似文献   

5.
Inheritance of chloroplast DNA (cpDNA) was examined in F1 progenies derived from three crosses and three corresponding reciprocal crosses betweenStellaria porsildii andS. longifolia. Chloroplast DNA restriction fragments were analyzed using methods of nonradioactive digoxigenin-11-dUTP labeling and chemiluminescent detection with Lumi-Phos 530. Distinct interspecific restriction fragment polymorphisms were identified and used to demonstrate the mode of cpDNA inheritance. Mode of cpDNA inheritance differed among crosses. Two crosses in whichS. porsildii, SP2920-21, was the maternal parent exhibited three different types of plastids, maternal, paternal and biparental, among the F1 hybrids, suggesting a biparental cpDNA inheritance and plastid sorting-out inStellaria.  相似文献   

6.
Summary A high frequency of paternal plastid transmission occurred in progeny from crosses among normal green alfalfa plants. Plastid transmission was analyzed by hybridization of radiolabeled alfalfa plastid DNA (cpDNA) probes to Southern blots of restriction digests of the progeny DNA. Each probe revealed a specific polymorphism differentiating the parental plastid genomes. Of 212 progeny, 34 were heteroplastidic, with their cpDNAs ranging from predominantly paternal to predominantly maternal. Regrowth of shoots from heteroplasmic plants following removal of top growth revealed the persistence of mixed plastids in a given plant. However, different shoots within a green heteroplasmic plant exhibited paternal, maternal, or mixed cpDNAs. Evidence of maternal nuclear genomic influence on the frequency of paternal plastid transmission was observed in some reciprocal crosses. A few tetraploid F1 progeny were obtained from tetraploid (2n=4x=32) Medicago sativa ssp. sativa x diploid (2n=2x=16) M. sativa ssp. falcata crosses, and resulted from unreduced gametes. Here more than the maternal genome alone apparently functioned in controlling plastid transmission. Considering all crosses, only 5 of 212 progeny cpDNAs lacked evidence of a definitive paternal plastid fragment.Contribution No. 89-524-J from the Kansas Agricultural Experiment Station, Kansas State University, Manhattan  相似文献   

7.
Summary Restriction fragment length polymorphisms (RFLPs) were used as markers to determine the transmission of chloroplast DNA (cpDNA) in poplar crosses. The plant material studied included individual trees ofPopulus trichocarpa, P. maximowiczii xtrichocarpa, P. maximowiczii xnigra, and offspring from controlled crosses between these trees. RFLPs were identified by direct observation of stained restriction fragments, as well as by molecular hybridization with heterologous cpDNA probes. Analysis of the restriction fragment patterns in the parents and their progeny showed only the patterns of the maternal tree in the progeny, while no paternal type was found. These results provide clear evidence of a maternal mode of chloroplast inheritance in the poplar clones studied.  相似文献   

8.
 Chloroplast DNA (cpDNA) restriction site diversity was assessed by 21 enzyme/probe combinations in 30 accessions of six Lens species, including the recently recognized L. lamottei and L. tomentosus. A total of 118 fragments were scored and 26 restriction site mutations were identified. The cpDNA restriction pattern supports circumscribing L. lamottei and L. tomentosus as independent species. The value of the data for reconstructing phylogeny in the genus is discussed. The cpDNA of all 13 accessions of the lentil’s wild progenitor, L. culinaris subsp. orientalis, differed from that of the single lentil cultivars used in this study. This diversity indicates that other populations of this subspecies from Turkey and Syria examined by Mayer and Soltis (1994) are potentially the founder members of lentil. Examination of L. lamottei×L. nigricans hybrids between accessions having different restriction patterns showed paternal plastid inheritance in L. nigricans. Received: 2 July 1996 / Accepted: 19 July 1996  相似文献   

9.
Summary The plastid DNAs of the species Daucus carota (ssp. sativus, libanotifolia, gingidium), D. maximus and D. muricatus were compared by restriction enzyme analysis. A number of restriction fragment length polymorphisms (RFLPs) were observed. As expected from taxonomic data the degree of plastid DNA homology between D. carota and D. maximus is significantly higher (97%) than between D. carota and D. muricatus (70%). On the basis of RFLPs of plastid DNA the mode of plastid inheritance in interspecific crosses between D. muricatus and D. c. sativus was analysed. The results clearly indicate paternal plastid inheritance. Thus Daucus is the second genus among angiosperms transmitting predominantly male plastids.  相似文献   

10.
Broadening of the genetic base and systematic exploitation of heterosis in cultivated lentils requires reliable information on genetic diversity in the germplasm. The ability of random amplified polymorphic DNA (RAPD) to distinguish among different taxa of Lens was evaluated for several geographically dispersed accessions/cultivars of four diploid Lens species. This study was carried out to assess whether RAPD data can provide additional evidence about the origin of the cultivated lentil and to measure genetic variability in lentil germplasm. Three cultivars of Lens culinaris ssp. culinaris, including one microsperma, and two macrosperma types, and four wild species (L. culinaris ssp. orientalis, L. odemensis and L. nigricans) were evaluated for genetic variability using a set of 1 11-mer and 14 random 10-mer primers. One hundred and fifty-eight reproducible and scorable DNA bands were observed from these primers. Genetic distances between each of the accessions were calculated from simple matching coefficients. Split decomposition analysis of the RAPD data allowed construction of an unrooted tree. This study revealed that (1) the level of intraspecific genetic variation in cultivated lentils is narrower than that in some wild species. (2) L. culinaris ssp. orientalis is the most likely candidate as a progenitor of the cultivated species, (3) L. nigricans accession W6 3222 (unknown) and L. c. ssp. orientalis W6 3244 (Turkey) can be reclassified as species of L. odemensis and (4) transmission of genetic material in Lens interspecific hybrids is genotypically specific, as identified by the RAPD markers in our study.  相似文献   

11.
Summary A genetic linkage map of lentil comprising 333 centimorgans (cM) was constructed from 20 restriction fragment length, 8 isozyme, and 6 morphological markers segregating in a single interspecific cross (Lens culinaris × L. orientalis). Because the genotypes at marker loci were determined for about 66 F2 plants, linkages are only reported for estimates of recombination less than 30 cM. Probes for identification of restriction fragment length polymorphisms (RFLPs) were isolated from a cDNA and EcoRI and PstI partial genomic libraries of lentil. The cDNA library gave the highest frequency of relatively low-copy-number probes. The cDNAs were about twice as efficient, relative to random genomic fragments, in RFLP detection per probe. Nine markers showed significant deviations from the expected F2 ratios and tended to show a predominance of alleles from the cultigen. Assuming a genome size of 10 Morgans, 50% of the lentil genome could be linked within 10 cM of the 34 markers and the map is of sufficient size to attempt mapping of quantitative trait loci.  相似文献   

12.
Inheritance of chloroplast DNA (cpDNA) was examined in 41 F1 progeny obtained from the following interspecific Bromus crosses: Bromus arvensis (2n = 14) × B. inermis (2n = 4x = 28); B. arvensis × B. inermis (2n = 8x = 56); B. arvensis × B. erectus (2n = 6x = 42); B. arvensis × B. erectus (2n = 8x = 56); B. arvensis × B. erectus (2n = 10x = 70). Chloroplast DNA of the parental species was digested with BamHI, EcoRI and HindIII and species-specific restriction fragment length polymorphisms were identified by observation of ethidium bromide stained agarose gels as well as by filter hybridization experiments involving heterologous cloned barley cpDNA probes. The stability of these point mutations was verified by examining the cpDNA restriction patterns of at least 28 individual plants raised from seed of each of the parental species. No intraspecific cpDNA variability was detected. All the F1 progeny examined exhibited the cpDNA restriction fragment patterns of the female parent. There was no evidence of any paternal or biparental cpDNA inheritance. The results provided evidence for the uniparental-maternal inheritance of cpDNA in the Bromus crosses examined.  相似文献   

13.
Randomly amplified polymorphic DNA (RAPD) markers were used to estimate intra- and interspecific variations in the genus Lens (lentil). Twenty cultivars of L. culinaris ssp. culinaris, including 11 microsperma (small-seeded) and nine macrosperma (large-seeded) types, and 16 wild relatives (four accessions each of L. culinaris ssp. orientalis, L. odemensis, L. nigricans and L. ervoides), were evaluated for genetic variability using a set of 40 random 10-mer primers. Fifty reproducibly scorable DNA bands were observed from ten of the primers, 90% of which were polymorphic. Genetic distances between each of the accessions were calculated from simple matching coefficients. A dendrogram showing genetic relationships between them was constructed by an unweighted pair-group method with arithmetical averages (UPGMA). This study revealed that (1) expect for L. ervoides, the level of intraspecific variation in cultivated lentil is lower than that in wild species, (2) L. culinaris ssp. orientalis is the most likely candidate for a progenitor of the cultivated species, and (3) microsperma and macrosperma cultivars were indistinguishable by the RAPD markers identified here.  相似文献   

14.
Organelle inheritance in intergeneric hybrids of Festuca pratensis and Lolium perenne was investigated by restriction enzyme and Southern blot analyses of chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA). All F1 hybrids exhibited maternal inheritance of both cpDNA and mtDNA. However, examination of backcross hybrids, obtained by backcrossing the intergeneric F1 hybrids to L. Perenne, indicated that both uniparental maternal organelle inheritance and uniparental paternal organelle inheritance can occur in different backcross hybrids.  相似文献   

15.
Summary Chloroplast DNA (cpDNA) was purified from blue spruce (Picea pungens Engelm.) and white spruce [P. glauca (Moench) Voss], and was digested with several different restriction endonucleases. Restriction fragment length polymorphisms (RFLPs) were identified that differentiated the cpDNA of both species. Intraspecific conservation of the RFLPs that differentiated each species was confirmed by examining trees from across the natural range of each species. Ten F1 hybrids were examined, and the cpDNA from each showed the banding pattern of the paternal species. Cloned Petunia cpDNA containing part of the rbcL gene hybridized to polymorphic bands, while a cloned maize mtDNA probe of the coxII gene failed to hybridize to any band.  相似文献   

16.
The mode of chloroplast DNA (cpDNA) inheritance was investigated in the genus Larrea (Zygophyllaceae) by polymerase chain reaction (PCR) amplification of cpDNA fragments using three pairs of chloroplast universal primers. A total of 20 F(1)s from interspecific crosses among five different taxa in the section Bifolium was examined. Twelve F(1)s were from six crosses between L. cuneifolia (4x) and L. divaricata (2x) (Peru or Argentina) or L. tridentata (2x or 4x). Eight F(1)s were from two sets of reciprocal crosses between L. divaricata (2x) (Argentina) and L. tridentata (2x). Length polymorphism was observed in all three regions of cpDNA that separated L. cuneifolia parents from L. divaricata and L. tridentata parents and in one of the three cpDNA regions that differentiated L. divaricata (Argentina) parents from L. tridentata (2x) parents. In each case, it was the paternal cpDNA marker that appeared in the F(1) individuals. This was further confirmed by restriction fragment length polymorphism (RFLP) analysis of the amplified cpDNA fragments. Larrea may be the fifth genus reported in angiosperms with a paternal bias in cpDNA transmission. Possible mechanisms that may result in paternal cpDNA inheritance were briefly reviewed. Based on the observed uniparental paternal inheritance of cpDNA, restriction analysis of the three cpDNA regions and previous cytogenetic studies, L. divaricata was probably the maternal progenitor of L. cuneifolia.  相似文献   

17.
The restriction patterns of two chloroplast fragments and one mitochondrial DNA fragment, amplified by PCR with universal primers, were studied to determine the mode of inheritance of these organelles in 143 progeny of five intraspecific crosses in pedunculate oak (Quercus robur L.). The results indicate that both genomes are maternally inherited, an observation which agrees with the commonly observed pattern of inheritance in angiosperms. They confirm that both chloroplast DNA and mitochondrial DNA can be used as a source of seed-specific markers for the study of the geographic structure of oaks. This is the first report of organelle inheritance within the Fagaceae, an important and widespread tree family.  相似文献   

18.
The inheritance of mitochondrial (mt) and chloroplast (ct) DNA in the progeny from interspecific crosses between the cultivated carrot (Daucus carota sativus) and wild forms of the genus Daucus was investigated by analysis of mt and ct RFLPs in single plants of the parental and filial generations. We observed a strict maternal inheritance of the organellar DNAs in all interspecific crosses examined. Previous studies on putative F2 plants from a cross between Daucus muricatus x D. carota sativus suggested paternal inheritance of ctDNA. Our reinvestigation of this material revealed that the mtDNA of the putative F2 plants differed from the mtDNA of both putative parents. Therefore, our data suggest that the investigated material originated from other, not yet identified, parents. Consequently, the analysis of this material cannot provide evidence for a paternal inheritance of ctDNA.  相似文献   

19.
We end-labeled Hin fI restriction digests of a PCR-amplified plastid encoded gene, the large subunit of ribulose bisphosphate carboxylase, to investigate patterns of cpDNA inheritance in Turnera ulmifolia. A total of 70 progeny from crosses among plants taken from ten populations revealed varying patterns of inheritance. A majority of progeny inherited the paternal cpDNA (64%), while 19% exhibited maternal and 17% biparental inheritance. Eight variegated progeny showed biparental inheritance and were analyzed in greater detail. We extracted and analyzed the cpDNA content of light- vs. dark- green leaf sectors from these plants. The results showed that vegetative segregation of cpDNA had occurred for seven of the eight plants.  相似文献   

20.
 To resolve the maternal parentage of the tetraploid Lotus corniculatus, restriction-site variation of chloroplast DNA (cpDNA) was studied in several accessions of that species, in the four putative parental diploid species, L. tenuis, L. alpinus, L. japonicus and L. uliginosus, and in four phylogenetically more distant diploid species, L. hispidus, L. edulis, L. ornithopodoides and Tetragonolobus maritimus var. siliquosus. Evidence of cpDNA maternal inheritance was obtained by using reciprocal controlled crosses between plants of L. corniculatus and natural tetraploid individuals of L. alpinus showing very distinct restriction patterns. Interspecific cpDNA variation in the eight Lotus species and T. siliquosus was analysed by comparing cpDNA fragment patterns produced by five restriction endonucleases and totalling 304 distinct fragments. Genetic differentiation in cpDNA was very high between the L. corniculatus group and L. hispidus on the one hand, and the three other species on the other hand. Sixteen restriction-site mutations and eight length polymorphisms were identified among the five species of the L. corniculatus group and L. hispidus, Lotus uliginosus, L. alpinus and L. japonicus showed at least six DNA changes with regard to the molecule of L. corniculatus. Accordingly, these species should be excluded as maternal progenitors of L. corniculatus. Conversely, the cpDNA of L. tenuis differed from that of L. corniculatus by only two small-length mutations. As also suggested previously from an analysis of several nuclear markers, the results reported here show decisively that L. tenuis may be considered as the most probable maternal ancestor of L. corniculatus. Received: 23 February 1997/Accepted: 28 February 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号