首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Osteoarthritis (OA) is a progressive disease of the joints characterized by degradation of articular cartilage. Although disease initiation may be multi-factorial, the cartilage destruction appears to be a result of uncontrolled proteolytic extracellular matrix destruction. A major component of the cartilage extracellular matrix is aggrecan, a proteoglycan that imparts compressive resistance to the tissue. Aggrecanase-mediated aggrecan degradation is a significant event in early stage OA. The relative contribution of individual ADAMTS-4 and ADAMTS-5 proteinases to cartilage destruction during OA has not been resolved completely. This review reveals that both ADAMTS-4/ADAMTS-5 are responsible for aggrecan degradation in a human model of OA, and is expected to list down the rational strategies which are being focussed for therapeutic intervention in OA.  相似文献   

4.
5.
ADAMTS-4 (aggrecanase1) is believed to play an important role in the degradation of aggrecan during the progression of joint diseases. ADAMTS-4 is synthesized as a latent pro-enzyme that requires the removal of the pro-domain, exposing the N-terminal neoepitope, to achieve activity. We developed a monoclonal antibody against this neoepitope of active ADAMTS-4. Furthermore, we established and characterized a competitive ELISA for measuring active ADAMTS-4 form applying the specific antibody. We used this assay to profile the presence of active ADAMTS-4 and its aggrecan degradation product (NITEGE373) in a bovine cartilage ex vivo model. We found that after stimulation with catabolic factors, the cartilage initially released high levels of aggrecanase-derived aggrecan fragments into supernatant but subsequently decreased to background levels. The level of active ADAMTS-4 released into the supernatant and retained in the cartilage matrix increased continuously throughout the 21 days of the study. The activity of ADAMTS-4 on the last day of catabolic stimulation was verified in vitro by adding deglycosylated or native aggrecan to the conditioned medium. Samples of human cartilage affected by varying degrees of osteoarthritis stained strongly for active ADAMTS-4 where surface fibrillation and clustered chondrocytes were observed. This assay could be an effective tool for studying ADAMTS-4 activity and for screening drugs regulating ADAMTS-4 activation. Moreover, it could be a potential biomarker for degenerative joint disease.  相似文献   

6.
Aggrecan loss from mouse cartilage is predominantly because of ADAMTS-5 activity; however, the relative contribution of other proteolytic and nonproteolytic processes to this loss is not clear. This is the first study to compare aggrecan loss with aggrecan processing in mice with single and double deletions of ADAMTS-4 and -5 activity (Deltacat). Cartilage explants harvested from single and double ADAMTS-4 and -5 Deltacat mice were cultured with or without interleukin (IL)-1alpha or retinoic acid and analyzed for (i) the kinetics of (35)S-labeled aggrecan loss, (ii) the pattern of (35)S-labeled aggrecan fragments released into the media and retained in the matrix, (iii) the pattern of total aggrecan fragments released into the media and retained in the matrix, and (iv) specific cleavage sites within the interglobular and chondroitin sulfate-2 domains. The loss of radiolabeled aggrecan from ADAMTS-4/-5 Deltacat cartilage was less than that from ADAMTS-4, ADAMTS-5, or wild-type cartilage under nonstimulated conditions. IL-1alpha and retinoic acid stimulated radiolabeled aggrecan loss from wild-type and ADAMTS-4 Deltacat cartilage, but there was little effect on ADAMTS-5 cartilage. Proteolysis of aggrecan contributed most to its loss in wild-type, ADAMTS-4, and ADAMTS-5 Deltacat cartilage explants. The pattern of proteolytic processing of aggrecan in these cultures was consistent with that occurring in cartilage pathologies. Retinoic acid, but not IL-1alpha, stimulated radiolabeled aggrecan loss from ADAMTS-4/-5 Deltacat cartilage explants. Even though there was a 300% increase in aggrecan loss from ADAMTS-4/-5 Deltacat cartilage stimulated with retinoic acid, the loss was not associated with aggrecanase cleavage but with the release of predominantly intact aggrecan consistent with the phenotype of the ADAMTS-4/-5 Deltacat mouse. Our results show that chondrocytes have additional mechanism for the turnover of aggrecan and that when proteolytic mechanisms are blocked by ablation of aggrecanase activity, nonproteolytic mechanisms compensate to maintain cartilage homeostasis.  相似文献   

7.
8.
Osteoarthritis is a common joint disease for which there are currently no disease-modifying drugs available. Degradation of the cartilage extracellular matrix is a central feature of the disease and is widely thought to be mediated by proteinases that degrade structural components of the matrix, primarily aggrecan and collagen. Studies on transgenic mice have confirmed the central role of Adamalysin with Thrombospondin Motifs 5 (ADAMTS-5) in aggrecan degradation, and the collagenolytic matrix metalloproteinase MMP-13 in collagen degradation. This review discusses recent advances in current understanding of the mechanisms regulating expression of these key enzymes, as well as reviewing the roles of other proteinases in cartilage destruction. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.  相似文献   

9.
10.
Proteolytic degradation of the major cartilage macromolecules, aggrecan and type II collagen, is a key pathological event in osteoarthritis (OA). ADAMTS-4 and ADAMTS-5, the primary aggrecanases capable of cartilage aggrecan cleavage, are synthesized as latent enzymes and require prodomain removal for activity. The N-termini of the mature proteases suggest that activation involves a proprotein convertase, but the specific family member responsible for aggrecanase activation in cartilage in situ has not been identified. Here we describe purification of a proprotein convertase activity from human OA cartilage. Through biochemical characterization and the use of siRNA, PACE4 was identified as a proprotein convertase responsible for activation of aggrecanases in osteoarthritic and cytokine-stimulated cartilage. Posttranslational activation of ADAMTS-4 and ADAMTS-5 was observed in the extracellular milieu of cartilage, resulting in aggrecan degradation. These findings suggest that PACE4 represents a novel target for the development of OA therapeutics.  相似文献   

11.
The major components of the cartilage extracellular matrix are type II collagen and aggrecan. Type II collagen provides cartilage with its tensile strength, whereas the water-binding capacity of aggrecan provides compressibility and elasticity. Aggrecan breakdown leads to an increase in proteolytic susceptibility of articular collagen; hence, aggrecan may also have a protective effect on type II collagen. Given their role in aggrecan degradation and differing substrate specificity profiles, the pursuit of inhibitors for both aggrecanase 1 (a disintegrin and metalloproteinase with thrombospondin motifs-4 [ADAMTS-4]) and aggrecanase 2 (ADAMTS-5) is desirable. We previously described collagen model fluorescence resonance energy transfer (FRET) substrates for aggrecan-degrading members of the ADAMTS family. These FRET substrate assays are also fully compatible with multiwell formats. In the current study, a collagen model FRET substrate was examined for inhibitor screening of ADAMTS-4. ADAMTS-4 was screened against a small compound library (n=960) with known pharmacological activity. Five compounds that inhibited ADAMTS-4>60% at a concentration of 1muM were identified. A secondary screen using reversed-phase high-performance liquid chromatography (RP-HPLC) was developed and performed for verification of the five potential inhibitors. Ultimately, piceatannol was confirmed as a novel inhibitor of ADAMTS-4, with an IC(50) value of 1muM. Because the collagen model FRET substrates have distinct conformational features that may interact with protease secondary substrate sites (exosites), nonactive site-binding inhibitors can be identified via this approach. Selective inhibitors for ADAMTS-4 would allow a more definitive evaluation of this protease in osteoarthritis and also represent a potential next generation in metalloproteinase therapeutics.  相似文献   

12.
Osteoarthritis (OA) is one of the most prevalent joint diseases in aged people and characterized by articular cartilage degeneration, synovial inflammation, and abnormal bone remodeling. Recent advances in OA research have clearly shown that OA development is associated with aberrant DNA methylation status of many OA-related genes. As one of most important cartilage degrading proteases in OA, a disintegrin and metalloproteinase with thrombospondin motifs subtype 5 (ADAMTS-5) is activated to mediate cartilage degradation in human OA and experimental murine OA models. The pathological factors and signaling pathways mediating ADAMTS-5 activation during OA development are not well defined and have been a focus of intense research. ADAMTS-5 promoter is featured by CpG islands. So far there have been no reports concerning the DNA methylation status in ADAMTS-5 promoter during OA development. In this study, we sought to investigate DNA methylation status in ADAMTS-5 promoter, the role of DNA methylation in ADAMTS-5 activation in OA, and the underlying mechanisms. The potential for anti-OA intervention therapy which is based on modulating DNA methylation is also explored. Our results showed that DNA methyltransferases 1 (Dnmt1) downregulation-associated ADAMTS-5 promoter demethylation played an important role in ADAMTS-5 activation in OA, which facilitated SPI-1 binding on ADAMTS-5 promoter to activate ADAMTS-5 expression. More importantly, OA pathological phenotype of mice was alleviated in response to Dnmt1-induced DNA methylation of ADAMTS-5 promoter. Our study will benefit not only for deeper insights into the functional role and regulation mechanisms of ADAMTS-5 in OA, but also for the discovery of disease-modifying OA drugs on the basis of ADAMTS-5 via modulating DNA methylation status.  相似文献   

13.

Objective

The specific degradation of type II collagen and aggrecan by matrix metalloproteinase (MMP)-9, -13 and ADAMTS-4 and -5 (aggrecanase-1 and -2) in the cartilage matrix is a critical step in pathology of osteoarthritis (OA). The aims of this study were: i) To investigate the relative contribution of ADAMTS-4 and ADAMTS-5 to cartilage degradation upon catabolic stimulation; ii) To investigate the effect of regulating the activities of key enzymes by mean of broad-spectrum inhibitors.

Methods

Bovine full-depth cartilage explants stimulated with tumor necrosis factor alpha (TNF-α) and Oncostatin M (OSM) were cultured for 21 days with or without a number of inhibitors targeting different types of proteases. Monoclonal antibodies were raised against the active sites of ADAMTS-4, -5, MMP-9 and -13, and 4 ELISAs were developed and technically validated. In addition, the established AGNxI (ADAMTS-degraded aggrecan), AGNxII (MMP-degraded aggrecan), and CTX-II (MMP-derived type II collagen) were quantified in the explants-conditioned media.

Results

We found that: i) Active ADAMTS-4, MMP-9, -13 were released in the late stage of TNF-α/ OSM stimulation, whereas no significant active ADAMTS-5 was detected in either extracts or supernatants; ii) Active ADAMTS-4 was primarily responsible for E373-374A bond cleavage in aggrecan in this setting; and iii) The compensatory mechanism could be triggered following the blockage of the enzyme caused by inhibitors.

Conclusions

ADAMTS-4 appeared to be the major protease for the generation of 374ARGS aggrecan fragment in the TNF-α/OSM stimulated bovine cartilage explants. This study addresses the need to determine the roles of ADAMTS-4 and ADAMTS-5 in human articular degradation in OA and hence identify the attractive target for slowing down human cartilage breakdown.  相似文献   

14.
ADAMTS-4 (aggrecanase-1) is a glutamyl endopeptidase capable of generating catabolic fragments of aggrecan analogous to those released from articular cartilage during degenerative joint diseases such as osteoarthritis. Efficient aggrecanase activity requires the presence of sulfated glycosaminoglycans attached to the aggrecan core protein, implying the contribution of substrate recognition/binding site(s) to ADAMTS-4 activity. In this study, we developed a sensitive fluorescence resonance energy transfer peptide assay with a K(m) in the 10 microm range and utilized this assay to demonstrate that inhibition of full-length ADAMTS-4 by full-length TIMP-3 (a physiological inhibitor of metalloproteinases) is enhanced in the presence of aggrecan. Our data indicate that this interaction is mediated largely through the binding of glycosaminoglycans (specifically chondroitin 6-sulfate) of aggrecan to binding sites in the thrombospondin type 1 motif and spacer domains of ADAMTS-4 to form a complex with an improved binding affinity for TIMP-3 over free ADAMTS-4. The results of this study therefore indicate that the cartilage environment can modulate the function of enzyme-inhibitor systems and could have relevance for therapeutic approaches to aggrecanase modulation.  相似文献   

15.
The expression and potential functional role of aggrecan in adipogenesis and adipose tissue development was investigated in murine models of obesity. Aggrecan, as well as the two aggrecanases ADAMTS-4 and ADAMTS-5 (A Disintegrin And Metalloproteinase with Thrombospondin motif) mRNAs, are expressed in subcutaneous (SC) and gonadal (GON) adipose tissues of mice. Their presence was confirmed by western blotting using adipose tissue extracts. In mice with nutritionally induced obesity (high fat diet) as well as in lean controls, aggrecan mRNA expression was downregulated whereas ADAMTS-4 and ADAMTS-5 were upregulated with time. In mice with genetically determined obesity (ob/ob), ADAMTS-5 mRNA was upregulated in both SC and GON adipose tissues, as compared to wild-type (WT) mice (p<0.001). Enhanced aggrecanase expression levels in these tissues were associated with significantly elevated levels of G1-NITEGE, a degradation product of aggrecan. Thus, aggrecan levels were high at the early stages of adipose tissue development in mice, whereas its production decreased and its degradation increased during development of obesity. A functional role of aggrecan in promoting early stages of adipogenesis is supported by the findings that it stimulated the in vitro differentiation of 3T3-F442A preadipocytes and the de novo in vivo accumulation of fat in Matrigel plaques injected into WT mice. Proteoglycans in the extracellular matrix of adipose tissue, such as aggrecan, may contribute to the regulation of lipid uptake and obesity in mice.  相似文献   

16.
17.
Osteoarthritis is characterized by the loss of aggrecan and collagen from the cartilage extracellular matrix. The proteinases responsible for the breakdown of cartilage aggrecan include ADAMTS-4 (aggrecanase 1) and ADAMTS-5 (aggrecanase 2). Post-translational inhibition of ADAMTS-4/-5 activity may be important for maintaining normal homeostasis of aggrecan metabolism, and thus, any disruption to this inhibition could lead to accelerated aggrecan breakdown. To date TIMP-3 (tissue inhibitor of matrix metalloproteinases-3) is the only endogenous inhibitor of ADAMTS-4/-5 that has been identified. In the present studies we identify alpha(2)-macroglobulin (alpha(2)M) as an additional endogenous inhibitor of ADAMTS-4 and ADAMTS-5. alpha(2)M inhibited the activity of both ADAMTS-4 and ADAMTS-5 in a concentration-dependent manner, demonstrating 1:1 stoichiometry with second-order rate constants on the order of 10(6) and 10(5) m(-1) s(-1), respectively. Inhibition of the aggrecanases was mediated by proteolysis of the bait region within alpha(2)M, resulting in physical entrapment of these proteinases. Both ADAMTS-4 and ADAMTS-5 cleaved alpha(2)M at Met(690)/Gly(691), representing a novel proteinase cleavage site within alpha(2)M and a novel site of cleavage for ADAMTS-4 and ADAMTS-5. Finally, the use of the anti-neoepitope antibodies to detect aggrecanase-generated alpha(2)M-fragments in synovial fluid was investigated and found to be uninformative.  相似文献   

18.
A disintegrin and metalloproteinase with thrombospondin motif (adamalysin–thrombospondins, ADAMTS) degrades aggrecan, one of the major extracellular matrix (ECM) components in cartilage. Mandibular condylar cartilage differs from primary cartilage, such as articular and growth plate cartilage, in its metabolism of ECM, proliferation, and differentiation. Mandibular condylar cartilage acts as both articular and growth plate cartilage in the growing period, while it remains as articular cartilage after growth. We hypothesized that functional and ECM differences between condylar and primary cartilages give rise to differences in gene expression patterns and levels of aggrecan and ADAMTS-1, -4, and -5 during growth and aging. We employed in situ hybridization and semiquantitative RT-PCR to identify mRNA expression for these molecules in condylar cartilage and primary cartilages during growth and aging. All of the ADAMTSs presented characteristic, age-dependent expression patterns and levels among the cartilages tested in this study. ADAMTS-5 mainly contributed to ECM metabolism in growth plate and condylar cartilage during growth. ADAMTS-1 and ADAMTS-4 may be involved in ECM turn over in articular cartilage. The results of the present study reveal that ECM metabolism and expression of related proteolytic enzymes in primary and secondary cartilages may be differentially regulated during growth and aging.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号