首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rapid exchange of high energy carrying molecules between intracellular compartments is essential in sustaining cellular energetic homeostasis. Adenylate kinase (AK)-catalyzed transfer of adenine nucleotide beta- and gamma-phosphoryls has been implicated in intracellular energy communication and nucleotide metabolism. To demonstrate the significance of this reaction in cardiac energetics, phosphotransfer dynamics were determined by [(18)O]phosphoryl oxygen analysis using( 31)P NMR and mass spectrometry. In hearts with a null mutation of the AK1 gene, which encodes the major AK isoform, total AK activity and beta-phosphoryl transfer was reduced by 94% and 36%, respectively. This was associated with up-regulation of phosphoryl flux through remaining minor AK isoforms and the glycolytic phosphotransfer enzyme, 3-phosphoglycerate kinase. In the absence of metabolic stress, deletion of AK1 did not translate into gross abnormalities in nucleotide levels, gamma-ATP turnover rate or creatine kinase-catalyzed phosphotransfer. However, under hypoxia AK1-deficient hearts, compared with the wild type, had a blunted AK-catalyzed phosphotransfer response, lowered intracellular ATP levels, increased P(i)/ATP ratio, and suppressed generation of adenosine. Thus, although lack of AK1 phosphotransfer can be compensated in the absence of metabolic challenge, under hypoxia AK1-knockout hearts display compromised energetics and impaired cardioprotective signaling. This study, therefore, provides first direct evidence that AK1 is essential in maintaining myocardial energetic homeostasis, in particular under metabolic stress.  相似文献   

2.
Previously we demonstrated that efficient coupling between cellular sites of ATP production and ATP utilization, required for optimal muscle performance, is mainly mediated by the combined activities of creatine kinase (CK)- and adenylate kinase (AK)-catalyzed phosphotransfer reactions. Herein, we show that simultaneous disruption of the genes for the cytosolic M-CK- and AK1 isoenzymes compromises intracellular energetic communication and severely reduces the cellular capability to maintain total ATP turnover under muscle functional load. M-CK/AK1 (MAK=/=) mutant skeletal muscle displayed aberrant ATP/ADP, ADP/AMP and ATP/GTP ratios, reduced intracellular phosphotransfer communication, and increased ATP supply capacity as assessed by 18O labeling of [Pi] and [ATP]. An analysis of actomyosin complexes in vitro demonstrated that one of the consequences of M-CK and AK1 deficiency is hampered phosphoryl delivery to the actomyosin ATPase, resulting in a loss of contractile performance. These results suggest that MAK=/= muscles are energetically less efficient than wild-type muscles, but an apparent compensatory redistribution of high-energy phosphoryl flux through glycolytic and guanylate phosphotransfer pathways limited the overall energetic deficit. Thus, this study suggests a coordinated network of complementary enzymatic pathways that serve in the maintenance of energetic homeostasis and physiological efficiency.  相似文献   

3.
An attempt has been made to determine the intracellular distribution of the multiforms of the adenylate kinase (AK) isoenzymes in mammalian tissues, to shed some light on their physiological roles, especially in energy metabolism. The adenylate kinase zymograms obtained from isoelectric focusing yielded two typical isoform patterns: (1) with a pI greater than or equal to 9 and 8.6, specific for bovine skeletal muscle, heart, aorta and brain, and (2) with a pI = 7.9 and 7.1, specific for liver and kidney. Pattern (1) was attributed to the cytosolic isoenzyme (AK1) as demonstrated by immunostaining with anti-AK1. Pattern (2) was attributed to the mitochondrial isoenzyme (AK2). These results were largely confirmed by chromatofocusing experiments. The AK1 isoenzyme was partially purified from the cytosol fraction of bovine aortic smooth muscle and had an apparent Mr of 23.5 kilodaltons. Its kinetic features are discussed from a comparative standpoint. Finally, the human serum AK1 isoform was also detected by Western blotting with a monoclonal antibody directed against crystalline porcine muscle AK1. These results are to form the basis of further studies on the 'aberrant' adenylate kinase isoenzyme from the serum of Duchenne muscular dystrophics.  相似文献   

4.
5.
Transduction of metabolic signals is essential in preserving cellular homeostasis. Yet, principles governing integration and synchronization of membrane metabolic sensors with cell metabolism remain elusive. Here, analysis of cellular nucleotide fluxes and nucleotide-dependent gating of the ATP-sensitive K+ (K(ATP)) channel, a prototypic metabolic sensor, revealed a diffusional barrier within the submembrane space, preventing direct reception of cytosolic signals. Creatine kinase phosphotransfer, captured by 18O-assisted 31P NMR, coordinated tightly with ATP turnover, reflecting the cellular energetic status. The dynamics of high energy phosphoryl transfer through the creatine kinase relay permitted a high fidelity transmission of energetic signals into the submembrane compartment synchronizing K(ATP) channel activity with cell metabolism. Knock-out of the creatine kinase M-CK gene disrupted signal delivery to K(ATP) channels and generated a cellular phenotype with increased electrical vulnerability. Thus, in the compartmentalized cell environment, phosphotransfer systems shunt diffusional barriers and secure regimented signal transduction integrating metabolic sensors with the cellular energetic network.  相似文献   

6.
7.
8.
G Xu  P O'Connell  J Stevens  R White 《Genomics》1992,13(3):537-542
We have isolated cDNA clones for human adenylate kinase isozyme 3 (AK3) with a genomic probe from the neurofibromatosis type 1 (NF1) region. Three overlapping clones isolated from a human frontal-cortex cDNA library gave rise to a consensus sequence of 1.7 kb. The open reading frame identified in this sequence predicted a peptide of 223 residues. A database search revealed striking homology, about 58% amino acid sequence identity, between this predicted protein and bovine AK3. Human AK3 protein also showed significant homology to other members of the adenylate kinase family isolated from various species. Genomic Southern analysis suggested that multiple AK3 loci exist in the human genome, including one located in an intron of NF1 on chromosome 17. The chromosome-17 locus appears to be a processed pseudogene, since it is intronless and contains a polyadenylate tract; it nevertheless retains coding potential because the open reading frame is not impaired by any observed base substitutions.  相似文献   

9.
10.
11.
12.
13.
14.
Efficient cellular energy homeostasis is a critical determinant of muscle performance, providing evolutionary advantages responsible for species survival. Phosphotransfer reactions, which couple ATP production and utilization, are thought to play a central role in this process. Here, we provide evidence that genetic disruption of AK1-catalyzed ss-phosphoryl transfer in mice decreases the potential of myofibers to sustain nucleotide ratios despite up-regulation of high-energy phosphoryl flux through glycolytic, guanylate and creatine kinase phosphotransfer pathways. A maintained contractile performance of AK1-deficient muscles was associated with higher ATP turnover rate and larger amounts of ATP consumed per contraction. Metabolic stress further aggravated the energetic cost in AK1(-/-) muscles. Thus, AK1-catalyzed phosphotransfer is essential in the maintenance of cellular energetic economy, enabling skeletal muscle to perform at the lowest metabolic cost.  相似文献   

15.
Naoi K  Hashimoto T 《The Plant cell》2004,16(7):1841-1853
Reversible protein phosphorylation regulates many cellular processes, including the dynamics and organization of the microtubule cytoskeleton, but the events mediating it are poorly understood. A semidominant phs1-1 allele of the Arabidopsis thaliana PROPYZAMIDE-HYPERSENSITIVE 1 locus exhibits phenotypes indicative of compromised cortical microtubule functions, such as left-handed helical growth of seedling roots, defective anisotropic growth at low doses of microtubule-destabilizing drugs, enhancement of the temperature-sensitive microtubule organization1-1 phenotype, and less ordered and more fragmented cortical microtubule arrays compared with the wild type. PHS1 encodes a novel protein similar to mitogen-activated protein kinase (MAPK) phosphatases. In phs1-1, a conserved Arg residue in the noncatalytic N-terminal region is exchanged with Cys, and the mutant PHS1 retained considerable phosphatase activity in vitro. In mammalian MAPK phosphatases, the corresponding region serves as a docking motif for MAPKs, and analogous Arg substitutions severely inhibit the kinase-phosphatase association. Transgenic studies indicate that the phs1-1 mutation acts dominant negatively, whereas the null phs1-2 allele is recessive embryonic lethal. We propose that the PHS1 phosphatase regulates more than one MAPK and that a subset of its target kinases is involved in the organization of cortical microtubules.  相似文献   

16.
The herpes simplex type 1 biochemically transformed human cell line, HB-1, was fused with thymidine kinase deficient rodent cells, and 18 hybrids were isolated using the HAT-ouabain selection system. The selected enzyme, viral thymidine kinase, was present in all 18 hybrids. In 16 of 18 hybrids the viral gene for thymidine kinase cosegregated with the human gene for adenylate kinase-1 (AK-1). Thirty-six bromodeoxyuridine (BrdUrd) resistant sublines were isolated from the 16 human AK-1 positive hybrids. Each BrdUrd-resistant subline was examined for the presence of the viral TK gene by back-selection in HAT medium, and for human AK-1. In all 36 BrdUrd-resistant sublines the viral TK gene cosegregated with the human AK-1 gene. These results indicate that the transforming viral DNA fragment was associated with a specific human chromosomal region in HB-1 cells.  相似文献   

17.
Adenylate kinases supply energy routes in cellular energetic homeostasis. In this work, we identified and characterized the adenylate kinase activity in extracts from the flagellated parasite Trypanosoma cruzi, the causative agent of Chagas' disease. Adenylate kinase activity was detected in different subcellular fractions and the cytosolic isoform was biochemically characterized. Cytosolic adenylate kinase specific activity increases continuously during the epimastigote growth and is down-regulated when other soluble phosphotransferase, arginine kinase, is overexpressed. Six different genes of adenylate kinase isoforms were identified and the mRNA expression was confirmed by RT-PCR and Northern Blot. Three open reading frames coding for different enzyme isoforms named TzADK1, TzADK2 and TzADK5 were cloned and functionally expressed in E. coli. This work reports an unusually large number of genes of adenylate kinases and suggests a coordinated regulation of phosphotransferase-mediated ATP regenerating pathways in the unicellular parasite Trypanosoma cruzi.  相似文献   

18.
In L6 myoblasts, insulin receptors with deletion of the C-terminal 43 amino acids (IR(Delta43)) exhibited normal autophosphorylation and IRS-1/2 tyrosine phosphorylation. The L6 cells expressing IR(Delta43) (L6(IRDelta43)) also showed no insulin effect on glucose uptake and glycogen synthase, accompanied by a >80% decrease in insulin induction of 3-phosphoinositide-dependent protein kinase 1 (PDK-1) activity and tyrosine phosphorylation and of protein kinase B (PKB) phosphorylation at Thr(308). Insulin induced the phosphatidylinositol 3 kinase-dependent coprecipitation of PDK-1 with wild-type IR (IR(WT)), but not IR(Delta43). Based on overlay blotting, PDK-1 directly bound IR(WT), but not IR(Delta43). Insulin-activated IR(WT), and not IR(Delta43), phosphorylated PDK-1 at tyrosines 9, 373, and 376. The IR C-terminal 43-amino-acid peptide (C-terminal peptide) inhibited in vitro PDK-1 tyrosine phosphorylation by the IR. Tyr-->Phe substitution prevented this inhibitory action. In the L6(hIR) cells, the C-terminal peptide coprecipitated with PDK-1 in an insulin-stimulated fashion. This peptide simultaneously impaired the insulin effect on PDK-1 coprecipitation with IR(WT), on PDK-1 tyrosine phosphorylation, on PKB phosphorylation at Thr(308), and on glucose uptake. Upon insulin exposure, PDK-1 membrane persistence was significantly reduced in L6(IRDelta43) compared to control cells. In L6 cells expressing IR(WT), the C-terminal peptide also impaired insulin-dependent PDK-1 membrane persistence. Thus, PDK-1 directly binds to the insulin receptor, followed by PDK-1 activation and insulin metabolic effects.  相似文献   

19.
李小曼  赵智  张英姿  王宇  丁久元 《微生物学报》2011,51(11):1476-1484
摘要:【目的】为了阻断L-精氨酸合成的前体物L-谷氨酸的分支代谢途径,增加L-精氨酸合成的代谢流,构建钝齿棒杆菌8-193(Corynebacterium crenatum 8-193)γ-谷氨酰激酶( EC:2.7.2.11,γ-glutamyl kinase) 基因proB 敲除的菌株,并研究proB 基因敲除对菌株生理特性的影响。【方法】运用PCR 技术分别扩增proB 基因的上游和下游序列,构建带有内部缺失的proB 基因的敲除载体。经过两次同源重组,敲除C.crenatum 8-193 的pro  相似文献   

20.
Xu M  Zhao YT  Song Y  Hao TP  Lu ZZ  Han QD  Wang SQ  Zhang YY 《生理学报》2007,59(2):175-182
为了验证心脏腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)是否为肾上腺素受体(adrenergic receptor,AR)的下游信号分子,本实验在大鼠心室肌源细胞和大鼠心脏中观察了α-AR对AMPK的激活作用,利用Western blot检测了AMPK-α总蛋白表达量及其172位苏氨酸磷酸化水平。雄性Sprague-Dawley大鼠皮下植入去甲肾上腺素(norepinephrine,NE),苯肾上腺素(phenylephrine,PE)或者溶剂载体[0.01%(W/V)维生素C]的缓释微泵(osmotic minipump)。NE或PE以每小时0.2 mg/kg的速率持续输注,7 d后用AMPK-α抗体免疫沉淀处理样本并测定AMPK的活性。结果显示,在细胞水平,NE引起的AMPK磷酸化水平增高具有时间依赖和剂量依赖特点, NE处理细胞10 min后AMPK磷酸化水平达到最高峰;NE引起的这种效应对β-AR的拮抗剂普萘洛尔(propranolol)不敏感,但是可以被α1-AR拮抗剂哌唑嗪(prazosin)所阻断。结果提示,α1-AR介导AMPK的磷酸化,但β-AR无此作用。AR激动剂持续灌注7 d后,AMPK的活性在NE(7.4倍)和PE(6.0倍)灌注组较对照组显著增高(P〈0.05,H=6)。PE持续灌注组大鼠与对照组相比无明显的心肌肥厚和组织纤维化变化。本文证明α1-AR激动剂可以增强AMPK的活性,揭示了心脏中α1-AR激动在调控AMPK活性方面的重要作用。深入了解α1-AR介导的AMPK激活可能在心衰治疗中具有重要的临床意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号