共查询到20条相似文献,搜索用时 0 毫秒
1.
Toru Takeuchi Yasuhiro Nakaya Naoki Kato Kunitomo Watanabe Kanehisa Morimoto 《FEBS letters》1999,450(3):418-180
We compared oxidative DNA damage in strictly anaerobic Prevotella melaninogenica, aerotolerant anaerobic Bacteroides fragilis, and facultative anaerobic Salmonella typhimurium after exposure to O2 or H2O2. Using HPLC with electrochemical detection, we measured 8-hydroxydeoxyguanosine (8OHdG) as a damage marker. O2 induced 8OHdG in P. melaninogenica but not in B. fragilis, which shows catalase activity, or in S. typhimurium. In P. melaninogenica, with catalase, O2 induced less 8OHdG; superoxide dismutase had no effect; with glucose and glucose oxidase, O2 induced more 8OHdG. H2O2 also markedly increased 8OHdG. O2 was suggested to induce 8OHdG through H2O2. O2 or H2O2 decreased survival only in P. melaninogenica. Highly sensitive to oxidative stress, P. melaninogenica could prove useful for investigating oxidative DNA damage. 相似文献
2.
Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. In the present study, we evaluated lipid peroxidation-mediated cytotoxicity and oxidative DNA damage in U937 cells. Upon exposure of U937 cells to tert-butylhydroperoxide (t-BOOH) and 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH), which induce lipid peroxidation in membranes, the cells exhibited a reduction in viability and an increase in the endogenous production of reactive oxygen species (ROS), as measured by the oxidation of 2',7'-dichlorodihydrofluorescein. In addition, a significant decrease in the intracellular GSH level and the activities of major antioxidant enzymes were observed. We also observed lipid peroxidation-mediated oxidative DNA damage, reflected by an increase in 8-OH-dG level and loss of the ability of DNA to renature. When the cells were pretreated with the antioxidant N-acetylcysteine (NAC) or the spin trap alpha-phenyl-N-t-butylnitrone (PBN), lipid peroxidation-mediated cytotoxicity in U937 cells was protected. This effect seems to be due to the ability of NAC and PBN to reduce ROS generation induced by lipid peroxidation. These results suggest that lipid peroxidation resulted in a pro-oxidant condition of U937 cells by the depletion of GSH and inactivation of antioxidant enzymes, which consequently leads to a decrease in survival and oxidative damage to DNA. The results indicate that the peroxidation of lipid is probably one of the important intermediary events in oxidative stress-induced cellular damage. 相似文献
3.
Two recent clinical trials suggest that beta-carotene may be harmful to smokers. In this study we examined the hypothesis that beta-carotene may become toxic when degradation occurs. beta-Carotene (BC) and lycopene (LP) with or without prior heat treatment (60 degrees C for 1 h in open air) were incubated at 20 and 40 microM with calf thymus DNA or human fibroblasts Hs68 cells. The heat treatment resulted in ca. 80% and 35% bleaching of BC and LP, respectively. When Hs68 cells were incubated with the oxidized beta-carotene (OBC) or oxidized lycopene (OLP) at 37 degrees C for 20 h, cell viability was significantly and dose-dependently decreased whereas cell viability was not affected by BC or LP. Cell death, which was already evident at 4 h after incubation with OBC or OLP, was possibly attributable to apoptosis, as shown by the increased histone-associated DNA fragmentation. However, cell lysis, measured as release of lactate dehydrogenase, also occurred at 4 h after incubation with OBC and OLP, although the extent was relatively small and was greater for OLP than for OBC. When calf thymus DNA was incubated with OBC or OLP at 37 degrees C for 20 h, the 8-hydroxy-2-deoxyguanosine (8-OH-dG) level was significantly and dose-dependently increased by OLP whereas the increase by OBC was only significant at 40 microM. When Hs68 cells were incubated with OBC and OLP for 20 h, both compounds increased the 8-OH-dG level, but the effect was only significant for 40 microM OLP. Comet (single-cell gel electrophoresis) assay of DNA damage in Hs68 cells was determined at 2 h after incubation with OBC or OLP because of its high sensitivity. Both OBC and OLP significantly and dose-dependently increased DNA breakage while BC and LP had no effect. Inclusion of BHT during incubation of cells with 40 microM OBC or OLP partially inhibited (ca. 40%, p < .05) the extent of comet formation. Intriguingly, OBC and OLP neither induce lipid peroxidation in Hs68 cells (measured as thiobarbituric acid-reactive substances released into the medium) nor increased the intracellular level of reactive oxygen species. Although it is presently unclear about what degradation products are formed, this study has demonstrated that, when oxidized, BC and LP lead to oxidative damage to both purified DNA and cellular DNA. The results suggest that such damage may contribute to the adverse effects of beta-carotene reported in recent clinical studies and caution that it is important to prevent oxidation of BC and LP for human uses such as in supplemental studies. 相似文献
4.
Fujita E Kouroku Y Miho Y Tsukahara T Ishiura S Momoi T 《Cell death and differentiation》1998,5(4):289-297
CPP32/apopain (Caspase-3), a protease of the Ced-3/ICE family, is a central mediator in the apoptosis induced by TNF or anti-Fas. In this study we demonstrate that wortmannin, an inhibitor of PI-3K, enhances the activation of CPP32 (Caspase-3) and DNA fragmentation in TNF-treated U937 cells and anti-Fas-treated Jurkat cells. Caspase-3-like activity, Ac-DEVD-MCA cleavage activity, is enhanced by wortmannin in the range of the concentration (1 - 100 nM) specifically inhibiting PI-3K. LY294002, another PI-3K inhibitor, also enhances Caspase-3-like activity, but inhibitors for myosin light chain kinase and calmodulin dependent kinase do not have any effect on the Caspase-3-like activity. Wortmannin (1 - 100 nM) enhances the processing of Caspase-3 (32K) into active form (17K) in TNF- or anti-Fas-treated cells, but not in untreated cells. These observations suggest that inhibition of PI-3K induces the activation of processing enzyme of Caspase-3 or increases the susceptibility of Caspase-3 to the processing enzyme. PI-3K seems to protect the cells from apoptosis by suppressing the activation of Caspase-3. 相似文献
5.
Kessel Maris Liu Su Xian Xu An Santella Regina Hei Tom K. 《Molecular and cellular biochemistry》2002,(1):301-308
Although arsenic is a well-established human carcinogen, the underlying carcinogenic mechanism(s) is not known. Using the human-hamster hybrid (AL) cell mutagenic assay that is sensitive in detecting mutagens that induce predominately multilocus deletions, we showed previously that arsenite is indeed a potent gene and chromosomal mutagen and that oxyradicals may be involved in the mutagenic process. In the present study, the effects of free radical scavenging enzymes on the cytotoxic and mutagenic potential of arsenic were examined using the AL cells. Concurrent treatment of cells with either superoxide dismutase or catalase reduced both the cytotoxicity and mutagenicity of arsenite by an average of 2–3 fold, respectively. Using immunoperoxidase staining with a monoclonal antibody specific for 8-hydroxy-2-deoxyguanosine (8-OHdG), we demonstrated that arsenic induced oxidative DNA damage in AL cells. This induction was significantly reduced in the presence of the antioxidant enzymes. Furthermore, reducing the intracellular levels of non-protein sulfhydryls (mainly glutathione) using buthionine S-R-Sulfoximine increased the total mutant yield by more than 3-fold as well as the proportion of mutants with multilocus deletions. Taken together, our data provide clear evidence that reactive oxygen species play an important causal role in the genotoxicity of arsenic in mammalian cells. 相似文献
6.
Arsenic induces oxidative DNA damage in mammalian cells 总被引:3,自引:0,他引:3
Although arsenic is a well-established human carcinogen, the underlying carcinogenic mechanism(s) is not known. Using the human-hamster hybrid (A(L)) cell mutagenic assay that is sensitive in detecting mutagens that induce predominately multilocus deletions, we showed previously that arsenite is indeed a potent gene and chromosomal mutagen and that oxyradicals may be involved in the mutagenic process. In the present study, the effects of free radical scavenging enzymes on the cytotoxic and mutagenic potential of arsenic were examined using the AL cells. Concurrent treatment of cells with either superoxide dismutase or catalase reduced both the cytotoxicity and mutagenicity of arsenite by an average of 2-3 fold, respectively. Using immunoperoxidase staining with a monoclonal antibody specific for 8-hydroxy-2'-deoxyguanosine (8-OHdG), we demonstrated that arsenic induced oxidative DNA damage in A(L) cells. This induction was significantly reduced in the presence of the antioxidant enzymes. Furthermore, reducing the intracellular levels of non-protein sulfhydryls (mainly glutathione) using buthionine S-R-Sulfoximine increased the total mutant yield by more than 3-fold as well as the proportion of mutants with multilocus deletions. Taken together, our data provide clear evidence that reactive oxygen species play an important causal role in the genotoxicity of arsenic in mammalian cells. 相似文献
7.
S Iwamoto K Takeda R Kamijo K Konno 《Biochemical and biophysical research communications》1990,170(1):73-79
1,25-dihydroxyvitamin D3 (1,25(OH)2D3) dose-dependently inhibited the cytotoxicity of tumor necrosis factor (TNF) in a human monoblastic leukemic cell line, U-937. Combination of TNF and 1,25(OH)2D3 remarkably increased mitochondrial superoxide dismutase (mSOD) of U-937 cells, TNF alone increased it only slightly and 1,25(OH)2D3 alone did not. The cytosolic SOD (cSOD) activity was not changed by TNF or/and 1,25(OH)2D3. The mSOD activity was not inhibited by 2 mM KCN, suggesting that mSOD should be a manganese SOD (MnSOD). These results suggest that 1,25(OH)2D3 may reduce the susceptibility to TNF cytotoxicity of U-937 cells by enhancing the ability of inducing MnSOD by TNF. 相似文献
8.
Mitochondrial DNA repair of oxidative damage in mammalian cells 总被引:9,自引:0,他引:9
Nuclear and mitochondrial DNA are constantly being exposed to damaging agents, from endogenous and exogenous sources. In particular, reactive oxygen species (ROS) are formed at high levels as by-products of the normal metabolism. Upon oxidative attack of DNA many DNA lesions are formed and oxidized bases are generated with high frequency. Mitochondrial DNA has been shown to accumulate high levels of 8-hydroxy-2'-deoxyguanosine, the product of hydroxylation of guanine at carbon 8, which is a mutagenic lesion. Most of these small base modifications are repaired by the base excision repair (BER) pathway. Despite the initial concept that mitochondria lack DNA repair, experimental evidences now show that mitochondria are very proficient in BER of oxidative DNA damage, and proteins necessary for this pathway have been isolated from mammalian mitochondria. Here, we examine the BER pathway with an emphasis on mtDNA repair. The molecular mechanisms involved in the formation and removal of oxidative damage from mitochondria are discussed. The pivotal role of the OGG1 glycosylase in removal of oxidized guanines from mtDNA will also be examined. Lastly, changes in mtDNA repair during the aging process and possible biological implications are discussed. 相似文献
9.
Vanags DM Larsson P Feltenmark S Jakobsson PJ Orrenius S Claesson HE Aguilar-Santelises M 《Cell death and differentiation》1997,4(6):479-486
U937 human myeloid leukemia cells are induced to apoptosis by tumour necrosis factor (TNF) plus cycloheximide (CHX). We have analysed the effect of various inhibitors of the arachidonic acid (AA) metabolism on several features of this process. The formation of high molecular weight and oligonucleosomal DNA fragments as well as nuclear fragmentation were reduced by inhibitors of 5-lipoxygenase (BWA4C and BWB70C), 5-LO activating protein (MK-886), and cytosolic PLA2 (AACOCF3). None of these agents blocked the morphological changes detected by microscopy or flow cytometry, phosphatidylserine exposure on the cell surface or Caspase 3-like activation. AA also induced nuclear fragmentation at a concentration of 1-20 microM. However, the mechanisms by which these inhibitors act, remain unexplained since there was no 5-LO expression in the U937 cells and no AA release followed their stimulation with TNF plus CHX. 相似文献
10.
Pilar T. V. Florentino Davi Mendes Francisca Nathalia L. Vitorino Davi J. Martins Julia P. C. Cunha Renato A. Mortara Carlos F. M. Menck 《PLoS pathogens》2021,17(4)
Trypanosoma cruzi is the etiologic agent of Chagas’ disease. Infected cells with T. cruzi activate several responses that promote unbalance of reactive oxygen species (ROS) that may cause DNA damage that activate cellular responses including DNA repair processes. In this work, HeLa cells and AC16 human cardiomyocyte cell line were infected with T. cruzi to investigate host cell responses at genome level during parasites intracellular life cycle. In fact, alkaline sensitive sites and oxidized DNA bases were detected in the host cell genetic material particularly in early stages of infection. These DNA lesions were accompanied by phosphorylation of the histone H2Ax, inducing γH2Ax, a marker of genotoxic stress. Moreover, Poly [ADP-ribose] polymerase-1 (PARP1) and 8-oxoguanine glycosylase (OGG1) are recruited to host cell nuclei, indicating activation of the DNA repair process. In infected cells, chromatin-associated proteins are carbonylated, as a possible consequence of oxidative stress and the nuclear factor erythroid 2–related factor 2 (NRF2) is induced early after infection, suggesting that the host cell antioxidant defenses are activated. However, at late stages of infection, NRF2 is downregulated. Interestingly, host cells treated with glutathione precursor, N-acetyl cysteine, NRF2 activator (Sulforaphane), and also Benznidonazol (BNZ) reduce parasite burst significantly, and DNA damage. These data indicate that the balance of oxidative stress and DNA damage induction in host cells may play a role during the process of infection itself, and interference in these processes may hamper T. cruzi infection, revealing potential target pathways for the therapy support. 相似文献
11.
《DNA Repair》2014
MutY DNA glycosylase homologs (MYH or MUTYH) reduce G:C to T:A mutations by removing misincorporated adenines or 2-hydroxyadenines paired with guanine or 8-oxo-7,8-dihydroguanine (8-oxo-G). Mutations in the human MYH (hMYH) gene are associated with the colorectal cancer predisposition syndrome MYH-associated polyposis. To examine the function of MYH in human cells, we regulated MYH gene expression by knockdown or overproduction. MYH knockdown human HeLa cells are more sensitive to the killing effects of H2O2 than the control cells. In addition, hMYH knockdown cells have altered cell morphology, display enhanced susceptibility to apoptosis, and have altered DNA signaling activation in response to oxidative stress. The cell cycle progression of hMYH knockdown cells is also different from that of the control cells following oxidative stress. Moreover, hMYH knockdown cells contain higher levels of 8-oxo-G lesions than the control cells following H2O2 treatment. Although MYH does not directly remove 8-oxo-G, MYH may generate favorable substrates for other repair enzymes. Overexpression of mouse Myh (mMyh) in human mismatch repair defective HCT15 cells makes the cells more resistant to killing and refractory to apoptosis by oxidative stress than the cells transfected with vector. In conclusion, MYH is a vital DNA repair enzyme that protects cells from oxidative DNA damage and is critical for a proper cellular response to DNA damage. 相似文献
12.
Induction of the oxidative response and of concanavalin A-binding capacity in maturing human U937 cells 总被引:1,自引:0,他引:1
Differentiation of U937 cells with phorbol myristate acetate (PMA) induces high stimulation by concanavalin A of the respiratory burst as well as an increase in concanavalin A-binding cell capacity. New concanavalin A-binding proteins are detected as differentiated U937 cells acquire their capacity to be activated by concanavalin A. We identified several concanavalin A-binding proteins, of molecular mass 30-200 kDa, in PMA-differentiated cells, but only some of them seem to be directly related to the concanavalin A effect on the respiratory burst. One of these candidates could be a glycoprotein with an apparent molecular mass of 140 kDa which behaved as a major concanavalin A-binding protein and is expressed on differentiated cells at the time these cells respond maximally to concanavalin A. 相似文献
13.
Dizdaroglu M 《Mutation research》2005,591(1-2):45-59
Oxidative damage to DNA caused by free radicals and other oxidants generate base and sugar damage, strand breaks, clustered sites, tandem lesions and DNA-protein cross-links. Oxidative DNA damage is mainly repaired by base-excision repair in living cells with the involvement of DNA glycosylases in the first step and other enzymes in subsequent steps. DNA glycosylases remove modified bases from DNA, generating an apurinic/apyrimidinic (AP) site. Some of these enzymes that remove oxidatively modified DNA bases also possess AP-lyase activity to cleave DNA at AP sites. DNA glycosylases possess varying substrate specificities, and some of them exhibit cross-activity for removal of both pyrimidine- and purine-derived lesions. Most studies on substrate specificities and excision kinetics of DNA glycosylases were performed using oligonucleotides with a single modified base incorporated at a specific position. Other studies used high-molecular weight DNA containing multiple pyrimidine- and purine-derived lesions. In this case, substrate specificities and excision kinetics were found to be different from those observed with oligonucleotides. This paper reviews substrate specificities and excision kinetics of DNA glycosylases for removal of pyrimidine- and purine-derived lesions in high-molecular weight DNA. 相似文献
14.
Hydroquinone (HQ) is used as an antioxidant in rubber industry and as a developing agent in photography. HQ is also an intermediate in the manufacture of rubber, food antioxidant and monomer inhibitor. However, the mechanisms of the effects, in particular those related to its genotoxicity in humans, are not well understood. The aim of this study was to assess the genotoxic effects of HQ and to identify and clarify the mechanisms, using human hepatoma HepG2 cells. DNA strand breaks and DNA-protein crosslinks (DPC) were measured by the proteinase K-modified alkaline single cell gel electrophoresis (SCGE) assays. Using the SCGE assay, a significant dose-dependent increment in DNA migration was detected at concentrations of HQ (6.25-25 microM); but at the higher tested concentrations (50 microM), a reduction in the migration compared to the maximum migration at 25 microM was observed. Post-incubation with proteinase K significantly increased DNA migration in cells exposed to higher concentrations of HQ (50 microM). A significant increase of the frequency of micronuclei was found in the range from 12.5 to 50 microM in the micronucleus test (MNT). The data suggested that HQ caused DNA strand breaks, DPC and chromosome breaks. To elucidate the oxidative DNA damage mechanism, the 2,7-dichlorofluorescein diacetate (DCFH-DA) and o-phthalaldehyde (OPT) were chosen to monitor the levels of reactive oxygen species (ROS) and glutathione (GSH), respectively. The present study showed that HQ induced the increased levels of ROS and depletion of GSH in HepG2 cells, the doses being 25-50 and 6.25-50 microM, respectively. Moreover, HQ significantly caused 8-hydroxydeoxyguanosine (8-OHdG) formation in HepG2 cells at concentrations from 12.5 to 50 microM. All these results demonstrate that HQ exerts genotoxic effects in HepG2 cells, probably through DNA damage by oxidative stress. GSH, as a main intracellular antioxidant, is responsible for cellular defense against HQ-induced DNA damage. 相似文献
15.
Takeaki Nagamine Kastuyuki Nakajima Hisashi Takada Yoshitaka Sekine Kazuhiro Suzuki 《Cytokine》2009,46(3):346-350
This study aims to determine whether zinc enhances interferon (IFN)-α activity in U937 cells. Type 1 IFN2 receptor (IFNAR2) protein in U937 cells was measured by flow cytometry. After 24 h of exposure to zinc chloride or polaprezinc (a chelate of zinc and l-carnosine) at concentrations ranging from 50 to 200 μM, histograms showing anti-IFNAR2 antibody-positive cells shifted to a higher FITC intensity. Zinc chloride and polaprezinc increased IFNAR2 mRNA levels approximately 30% and 40%, respectively, compared to the control. l-Carnosine alone did not alter IFNAR2 mRNA or protein levels. Cellular levels of 2′–5′ oligoadenylate synthetases (OAS) were markedly increased by IFN-α, and the increase was significantly accelerated by polaprezinc. However, polaprezinc alone did not increase 2′–5′OAS levels. The finding suggests that zinc, especially polaprezinc, enhances the expression of INFAR2 in U937 cells, thereby inducing production of the anti-viral protein 2′–5′OAS. 相似文献
16.
Induction and subsequent repair of DNA damage by fast neutrons in cultured mammalian cells 总被引:1,自引:0,他引:1
The induction and repair of DNA damage were studied by a DNA unwinding method in mouse L5178Y cells exposed to fast neutrons. DNA lesions induced by fast neutrons were classified into three types from their repair profiles: fast-reparable breaks (T1/2 = 3-5 min), slow-reparable breaks (T1/2 = 70 min), and nonreparable breaks. The repair rates of both fast-reparable and slow-reparable breaks were almost the same as those of corresponding damage induced by low-LET radiation. Neutrons induced a smaller amount of fast-reparable damage, an almost equal amount of slow-reparable damage, and a larger amount of nonreparable damage than those induced by equal doses of gamma rays or X rays. RBEs for fast- and slow-reparable damage were 0.3 and 0.9, respectively. The RBE for nonreparable damage was dose dependent and was 1.4 at the level of 100 breaks/10(12) Da DNA. Among the three types of lesions, only the nonreparable damage levels correlated with the linear-quadratic shape of the survival curves and with the enhanced killing effectiveness of neutrons (RBE = 1.7 at D0). 相似文献
17.
Szekely AM Bleichert F Nümann A Van Komen S Manasanch E Ben Nasr A Canaan A Weissman SM 《Molecular and cellular biology》2005,25(23):10492-10506
Werner syndrome, caused by mutations of the WRN gene, mimics many changes of normal aging. Although roles for WRN protein in DNA replication, recombination, and telomere maintenance have been suggested, the pathology of rapidly dividing cells is not a feature of Werner syndrome. To identify cellular events that are specifically vulnerable to WRN deficiency, we used RNA interference (RNAi) to knockdown WRN or BLM (the RecQ helicase mutated in Bloom syndrome) expression in primary human fibroblasts. Withdrawal of WRN or BLM produced accelerated cellular senescence phenotype and DNA damage response in normal fibroblasts, as evidenced by induction of gammaH2AX and 53BP1 nuclear foci. After WRN depletion, the induction of these foci was seen most prominently in nondividing cells. Growth in physiological (3%) oxygen or in the presence of an antioxidant prevented the development of the DNA damage foci in WRN-depleted cells, whereas acute oxidative stress led to inefficient repair of the lesions. Furthermore, WRN RNAi-induced DNA damage was suppressed by overexpression of the telomere-binding protein TRF2. These conditions, however, did not prevent the DNA damage response in BLM-ablated cells, suggesting a distinct role for WRN in DNA homeostasis in vivo. Thus, manifestations of Werner syndrome may reflect an impaired ability of slowly dividing cells to limit oxidative DNA damage. 相似文献
18.
A M Knaapen F Seiler P A Schilderman P Nehls J Bruch R P Schins P J Borm 《Free radical biology & medicine》1999,27(1-2):234-240
Inflammation has been recognized as a contributing factor in the pathogenesis of some cancers. In the lung, inflammation is characterized by an influx of polymorphonuclear leukocytes (PMN) that release a variety of reactive oxygen species (ROS). The aim of the present study was to investigate the direct effect of PMN on oxidative DNA damage in lung target cells. Therefore, rat alveolar epithelial cells (RLE) were coincubated with PMN or hydrogen peroxide. Known to be correlated with the incidence of cancer, 7-hydro-8-oxo-2'deoxyguanosine (8-oxodG) was used as an effect marker for oxidative damage. Viability of the RLE, when coincubated with PMN, decreased to 43%, dependent on the ratio between PMN and RLE. After washing off PMN, 8-oxodG levels were significantly increased in RLE, but the highest levels were observed in the washed off PMN fraction. In addition, to avoid washing off procedures, immunohistochemical analysis was used to measure the 8-oxodG levels specifically in the RLE and similar results were obtained. In addition, inhibitor experiments showed that antioxidants ameliorated oxidative DNA damage. Our data provide evidence that ROS released by PMN as well as H2O2, cause oxidative DNA damage in epithelial cells. 相似文献
19.
Zhao H Dobrucki J Rybak P Traganos F Dorota Halicka H Darzynkiewicz Z 《Cytometry. Part A》2011,79(11):897-902
Induction of DNA damage by oxidants such as H(2) O(2) activates the complex network of DNA damage response (DDR) pathways present in cells to initiate DNA repair, halt cell cycle progression, and prepare an apoptotic reaction. We have previously reported that activation of Ataxia Telangiectasia Mutated protein kinase (ATM) and induction of γH2AX are among the early events of the DDR induced by exposure of cells to H(2) O(2) , and in human pulmonary carcinoma A549 cells, both events were expressed predominantly during S-phase. This study was designed to further explore a correlation between these events and DNA replication. Toward this end, we utilized 5-ethynyl-2'deoxyuridine (EdU) and the "click chemistry" approach to label DNA during replication, followed by exposure of A549 cells to H(2) O(2) . Multiparameter laser scanning cytometric analysis of these cells made it possible to identify DNA replicating cells and directly correlate H(2) O(2) -induced ATM activation and induction of γH2AX with DNA replication on a cell by cell basis. After pulse-labeling with EdU and exposure to H(2) O(2) , confocal microscopy was also used to examine the localization of DNA replication sites ("replication factories") versus the H2AX phosphorylation sites (γH2AX foci) in nuclear chromatin in an attempt to observe the absence or presence of colocalization. The data indicate a close association between DNA replication and H2AX phosphorylation in A549 cells, suggesting that these DNA damage response events may be triggered by stalled replication forks and perhaps also by induction of DNA double-strand breaks at the primary DNA lesions induced by H(2) O(2) . 相似文献
20.
Induction of oxidative DNA damage in the peri-infarct region after permanent focal cerebral ischemia 总被引:19,自引:0,他引:19
Nagayama T Lan J Henshall DC Chen D O'Horo C Simon RP Chen J 《Journal of neurochemistry》2000,75(4):1716-1728
To address the role of oxidative DNA damage in focal cerebral ischemia lacking reperfusion, we investigated DNA base and strand damage in a rat model of permanent middle cerebral artery occlusion (MCAO). Contents of 8-hydroxyl-2'-deoxyguanosine (8-OHdG) and apurinic/apyrimidinic abasic sites (AP sites), hallmarks of oxidative DNA damage, were quantitatively measured in nuclear DNA extracts from brains obtained 4-72 h after MCAO. DNA single- and double-strand breaks were detected on coronal brain sections using in situ DNA polymerase I-mediated biotin-dATP nick-translation (PANT) and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL), respectively. Levels of 8-OHdG and AP sites were markedly elevated 16-72 h following MCAO in the frontal cortex, representing the peri-infarct region, but levels did not significantly change within the ischemic core regions of the caudateputamen and parietal cortex. PANT- and TUNEL-positive cells began to be detectable 4-8 h following MCAO in the caudate-putamen and parietal cortex and reached maximal levels at 72 h. PANT- and TUNEL-positive cells were also detected 16-72 h after MCAO in the lateral frontal cortex within the infarct border, where many cells also showed colocalization of DNA single-strand breaks and DNA fragmentation. In contrast, levels of PANT-positive cells alone were transiently increased (16 h after MCAO) in the medial frontal cortex, an area distant from the infarct zone. These data suggest that within peri-infarct brain regions, oxidative injury to nuclear DNA in the form of base and strand damage may be a significant and contributory cause of secondary expansion of brain damage following permanent focal ischemia. 相似文献