首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In the field vole, Microtus agrestis, most of the constitutive heterochromatin is localized in the giant chromosomes. A detailed examination of a large number of adult cell types reveals that this chromatin is actually present as a heterochromatic fiber in all interphase nuclei. Depending upon the cell types, however, the fiber shows varying degrees of condensation and folding ranging from a very long and extended fiber to a large compact chromocenter. The number of cell types with giant chromocenters was less commonly observed than those with extended fibers. This explains why some cells were previously thought to be devoid of heterochromatin.—The results of this investigation strongly indicate that constitutive heterochromatin represents a unique nuclear entity.This investigation was supported by NIH funds (Grant No. HD 1962).  相似文献   

3.
Replication of autosomal heterochromatin in man   总被引:1,自引:0,他引:1  
Summary In interphase nuclei of leukocytes and oral mucosa cells of normal human males and f males, two types of heterochromatin can he distinguished according to their location in the nucleus. Firstly, nucleolus-associated heterochromatin which consists of one large mass of autosomal segments surrounding the nucleolus, or several large masses if there appears to be more than one nucleolus in the same nucleus. Secondly, scattered heterochromatin composed of a large number of positively heteropycnotic bodies scattered throughout the nucleus and not directly associated with the nucleolus. The correspondence of this type of heterochromatin with chromosome segments is obtained at late prophase where several positively heteropycnotic regions belonging to the autosomes are found scattered throughout the nucleus.In human females sex-chromatin is present in addition to these two types. In leukocytes the sex-chromatin cannot be easily identified due to the large size and number of the scattered heterochromatic bodies, but in oral mucosa cells such a distinction is more easily achieved due to the smaller amount of autosomal heterochromatin.Nucleolus-associated and scattered heterochromatin from leukocytes of both sexes synthesized their DNA at a different period of time from the euchromatin. The asynchrony of replication observed in the heterochromatin at interphase is in agreement with the asynchrony between autosomes and within autosomes described by many authors at metaphase. This does not mean, however, that every segment or chromosome found replicating asynchronously at metaphase contains necessarily heterochromatin.Dedicated to Professor H. Bauer on the occasion of his 60th birthday. — This investigation was supported by a research grant to A. Lima-de-Faria from the Swedish Natural Science Research Council.  相似文献   

4.
Karyological data are presented for 13 genera of palm subfamily Coryphoideae s.l. Chromosome numbers of 4 species and of genus Guihaia (G. argyrata, 2n = 36) are new. Apart from the prevailing chromosome number of 2n = 36, subfam. Coryphoideae s.l. shows extreme heterogeneity with respect to chromosome size and morphology, organization of constitutive heterochromatin (C-banding, fluorochrome staining), interphase nucleus structures and prophase condensation patterns. Five karyologically differing groups of genera can be distinguished (Coccothrinax-group, Guihaia, Livistona-group incl. Sabal, Phoenix, and Bismarckia). Chromosome evolution probably has gone from medium sized to very small chromosomes with an average length of less than 1.5 μm; hc-distribution from evenly distributed throughout the karyotype to accumulated in few chromosomes; from simple banding patterns to complicated ones (hc-elaboration). Karyotypes with chromosomes of continuously decreasing size, similar morphology, and uniform prophase condensation probably gave rise to almost bimodal karyotypes with non-uniform, heteropycnotic chromosomal structures. Changes in the organization of interphase nuclei are corresponding. Karyotype differentiation is compared to major evolutionary events in floral and vegetative morphology of subfam. Coryphoideae s.l. Karyologically, genera Phoenix and Bismarckia are isolated and the relations to the remaining part of the subfamily are not clear.  相似文献   

5.
Cobb J  Miyaike M  Kikuchi A  Handel MA 《Chromosoma》1999,108(7):412-425
Mechanisms of chromosome condensation and segregation during the first meiotic division are not well understood. Resolution of recombination events to form chiasmata is important, for it is chiasmata that hold homologous chromosomes together for their oppositional orientation on the meiotic metaphase spindle, thus ensuring their accurate segregation during anaphase I. Events at the centromere are also important in bringing about proper attachment to the spindle apparatus. This study was designed to correlate the presence and activity of two proteins at the centromeric heterochromatin, topoisomerase II alpha (TOP2A) and histone H3, with the processes of chromosome condensation and individualization of chiasmate bivalents in murine spermatocytes. We tested the hypothesis that phosphorylation of histone H3 is a key event instigating localization of TOP2A to the centromeric heterochromatin and condensation of chromosomes as spermatocytes exit prophase and progress to metaphase. Activity of topoisomerase II is required for condensation of chromatin at the end of meiotic prophase. Histone H3 becomes phosphorylated at the end of prophase, beginning with its phosphorylation at the centromeric heterochromatin in the diplotene stage. However, it cannot be involved in localization of TOP2A, since TOP2A is localized to the centromeric heterochromatin throughout most of meiotic prophase. This observation suggests a meiotic function for TOP2A in addition to its role in chromatin condensation. The use of kinase inhibitors demonstrates that phosphorylation of histone H3 can be uncoupled from meiotic chromosome condensation; therefore other proteins, such as those constituting metaphase-promoting factor, must be involved. These results define the timing of important meiotic events at the centromeric heterochromatin and provide insight into mechanisms of chromosome condensation for meiotic metaphase.  相似文献   

6.
7.
Baldev K. Vig 《Genetics》1982,102(4):795-806
The late metaphase-early anaphase cells from various tissues of male Mus musculus, M. poschiavinus, M. spretus, M. castaneus, female and male Bos taurus (cattle) and female Myopus schisticolor (wood lemming) were analyzed for centromeres that showed separation into two daughter centromeres and those that did not show such separation. In all strains and species of mouse the Y chromosome is the first one to separate, as is the X or Y in the cattle. These sex chromosomes are devoid of constitutive heterochromatin, whereas all autosomes in these species carry detectable quantities. In cattle, the late replicating X chromosome appears to separate later than the active X. In the wood lemming the three pairs of autosomes with the least amount of centromeric constitutive heterochromatin separate first. These are followed by the separation of seven pairs of autosomes carrying medium amounts of constitutive heterochromatin. Five pairs of autosomes with the largest amounts of constitutive heterochromatin are the last in the sequence of separation. The sex chromosomes with medium amounts of constitutive heterochromatin around the centromere, and a very large amount of distal heterochromatin, separate among the very late ones but are not the last. These observations assign a specific role to centromeric constitutive heterochromatin and also indicate that nonproximal heterochromatin does not exert control over the sequence in which the centromeres in the genome separate. It appears that qualitative differences among various types of constitutive heterochromatin are as important as quantitative differences in controlling the separation of centromeres.  相似文献   

8.
In nuclei of the inactive thyroid gland of Microtus agrestis the constitutive heterochromatin is heteropycnotic and forms large chromocenters. After specific activation of the thyroid gland with thyroid stimulating hormone (TSH), or with the thyrostatic methylthiouracil (MTU), an enlargement of cells and nuclei, a high mitotic activity and a despiralization of the contitutive heterochromatin are observed. The facultative heterochromatin, on the contrary, remains condensed. The structure of the nuclei of the parathyroid gland is not altered by the treatment with TSH or MTU. The findings permit the assumption that constitutive heterochromatin has specific functions, e.g. as a nucleolus organizer, which are blocked in the heteropycnotic state and active in the isopycnotic state.Supported by the Bundesministerium für Bildung und Wissenschaft of the Federal Republic of Germany.  相似文献   

9.
Kathleen Church 《Chromosoma》1977,64(2):143-154
During premeiotic interphase in the male grasshopper Brachystola magna the nucleus is divided into two nuclear envelope bound compartments, one containing the X chromosome and one the autosomes. — The autosomal compartment is characterized by an invaginated nuclear envelope with nuclear pores distributed throughout the envelope. In a polarized region of the cell the pericentric heterochromatic chromocenters are associated with the inner membrane of the envelope invaginations. In this species the chromosomes are telocentric (acrocentric?) and the pericentric heterochromatin marks the proximal chromosome ends. It is concluded that the chromosome ends are attached to the nuclear envelope at premeiotic interphase. — Comparisons are made between the present observations on chromosome arrangements and the nuclear envelope at premeiotic interphase to earlier observations at early meiotic prophase in the same species (Church, 1976). It is concluded that a rearrangement of both the proximal chromosome ends and the nuclear envelope occurs as cells enter meiotic prophase.  相似文献   

10.
Grasshoppers of the species Melanoplus differentialis were injected with tritium-labelled thymidine. At intervals thereafter autoradiographic stripping film was applied over Feulgen squashes and sections. In this species during early prophase of meiosis the sex chromosome forms a heterochromatic block large enough to be resolved in tritium autoradiographs. A study of the squash preparations reveals that the sex chromosome is synthesizing DNA at a different period of time from the euchromatic autosomes. Since there is a developmental sequence of spermatocyte cysts along the testicular tubes it is possible from the sections to show that the heterochromatin synthesizes DNA later than does the euchromatin. To find out whether the results obtained in Melanoplus were characteristic of heterochromatin in general, young seedlings of rye were grown in a tritiated thymidine solution and Feulgen squashes were made as for Melanoplus. In rye leaf nuclei there is a large block of heterochromatin constituted by the proximal regions of the chromosomes and a euchromatic one formed by the median and distal regions of the same chromosomes. Here also the heterochromatin synthesizes DNA at a different period of time from the euchromatin. It is concluded that in rye the asynchrony of synthesis occurs within each chromosome. Counts of silver grains over the two types of chromatin in nuclei of Melanoplus and Secale disclosed that the number of grains per unit area was two to three times higher over the heterochromatin. To check the DNA content, Feulgen photometric measurements were made of Melanoplus nuclei at the same stage. The Feulgen and grain counts agree in showing that the heterochromatin contains two to three times more DNA per unit area than the euchromatin.  相似文献   

11.
Arrangement of centromeres in mouse cells   总被引:17,自引:4,他引:17  
Applying a staining procedure which reveals constitutive heterochromatin to cytological preparations of the mouse (Mus musculus), one detects heterochromatin pieces at the centromeric areas of all chromosomes except the Y. The Y chromosome is somewhat heteropyenotic in general but possesses no intensely stained centromeric heterochromatin. The arrangement of the centromeric heterochromatin in interphase cells is apparently specific for a given cell type. In meiotic prophase, centromeric heterochromatin may form clusters among bivalents. From the location of the centromeric heterochromatin of the X chromosome in the sex bivalent, it is concluded that the association between the X and Y (common end) in meiosis is limited to the distal portions of the sex elements.  相似文献   

12.
The aim of this work is to characterize Nephilengys cruentata in relation to the diploid number, chromosome morphology, type of sex determination chromosome system, chromosomes bearing the Nucleolar Organizer Regions (NORs), C-banding pattern, and AT or GC repetitive sequences. The chromosome preparations were submitted to standard staining (Giemsa), NOR silver impregnation, C-banding technique, and base-specific fluorochrome staining. The analysis of the cells showed 2n = 24 and 2n = 26 chromosomes in the embryos, and 2n = 26 in the ovarian cells, being all the chromosomes acrocentric. The long arm of the pairs 1, 2 and 3 showed an extensive negative heteropycnotic area when the mitotic metaphases were stained with Giemsa. The sexual chromosomes did not show differential characteristics that allowed to distinguish them from the other chromosomes of the complement. Considering the diploid numbers found in N. cruentata and the prevalence of X1X2 sex determination chromosome system in Tetragnathidae, N. cruentata seems to possess 2n = 24 = 22 + X1X2 in the males, and 2n = 26 = 22 + X1X1X2X2 in the females. The pairs 1, 2 and 3 showed NORs which are coincident with the negative heteropycnotic patterns. Using the C-banding technique, the pericentromeric region of the chromosomes revealed small quantity or even absence of constitutive heterochromatin, differing of the C-banding pattern described in other species of spiders. In N. cruentata the fluorochromes DAPI/DA, DAPI/MM and CMA3/DA revealed that the constitutive heterochromatin is rich in AT bases and the NORs possess repetitive sequences of GC bases.  相似文献   

13.
Chromosomes of palpigrades (Arachnida: Palpigradi), a rare arachnid order with numerous primitive characters, were studied for the first time. We analysed two species of the genus Eukoenenia, namely E. spelaea and E. mirabilis. Their karyotypes are uniform, consisting of a low number of tiny chromosomes that decrease gradually in size. Study of the palpigrade karyotype did not reveal morphologically differentiated sex chromosomes. Analysis of E. spelaea showed that constitutive heterochromatin is scarce, GC-rich, and restricted mostly to presumed centromeric regions. Meiosis is remarkable for the presence of a short diffuse stage and prominent nucleolar activity. During prophase I, nuclei contain a large nucleolus. Prominent knob at the end of one bivalent formed by constitutive heterochromatin is associated to the nucleolus by an adjacent NOR. Presence of a nucleolus-like body at male prophase II suggests activity of NOR also during beginning of the second meiotic division. The data suggest acrocentric morphology of palpigrade chromosomes. Palpigrades do not display holocentric chromosomes which appear to be apomorphic features of a number of arachnid groups. These are: acariform mites, buthid scorpions, and spiders of the superfamily Dysderoidea. Therefore, cytogenetic data do not support a close relationship of palpigrades and acariform mites as suggested previously.  相似文献   

14.
Uzi Nur 《Chromosoma》1981,82(3):353-365
In most animals, including grasshoppers, the X chromosome is heterochromatic (heteropycnotic) during prophase I and metaphase I of spermatogenesis. This report describes one grasshopper male in which at these states some of the X chromosomes contained an euchromatic (E) segment. In grasshoppers, the heteropycnotic state of the X is apparently established prior to the formation of the cysts. The spermatocytes containing the E segments, however, did not comprise whole cysts. It was concluded, therefore, that the E segments resulted from a localized euchromatinization rather than a failure to become heteropycnotic. The cytology of this male was unusual in two other respects. In most of the spermatocytes the chromosomes were longer and thinner than those of other males. In addition, in some of the cells undergoing meiosis, the cytoplasm failed to divide during both meiotic divisions and the resulting spermatids failed to differentiate into sperm. Because in this species both the presence of Xs with E segments and undercondensation are very rare and both involve condensation, it is likely that they are in some way related. Evidence for and against the possibility that the E segments were genetically active and that this activity led to the arrest of some of the spermatids is discussed.  相似文献   

15.
The constitutive heterochromatin of Dichroplus silveiraguidoi, a species which shows an exceptionally low chromosome number (2n=8), was studied at meiosis with a staining technique on normal and hypotonically treated specimens. The results showed: 1) an unusual behaviour of the heterochromatic blocks located in the so-called synaptic region of the sex bivalent (Neo Y-Neo X), which remains paired from early prophase through metaphase I; 2) in normal or in hypotonically treated cells a heterogeneous configuration of the C-heterochromatic blocks was observed. This configuration is characterized by the existence of small positive granules interconnected by euchromatic filaments and is enhanced by treatment with a low ionic strength solution; 3) A weakly positive stained (intermediate) material was demonstrated in the Neo X chromosome; 4) A large amount of heterochromatin is distributed in the form of granular material along the length of the autosomes and as telomeric and centromeric blocks in all chromosomes. The possible evolutionary mechanisms involved and the significance of the C-band heterochromatin demonstrated in this species are discussed.  相似文献   

16.
The C-banding patterns of twelve weevil species are presented. The obtained results confirm the existence of two groups of species: with a small or large amount of heterochromatin in the karyotype. The first group comprises seven species (Apionidae: Holotrichapion pisi; Curculionidae: Phyllobius urticae, Ph. pyri, Ph. maculicornis, Tanymecus palliatus, Larinodontes turbinatus, Cionus tuberculosus). In weevils with a small amount of heterochromatin, tiny grains on the nucleus in interphase are visible, afterwards in mitotic and meiotic prophase appearing as dark dots. The absence of C-bands does not indicate a lack of heterochromatin but heterochromatic regions are sometimes so small that the condensation is not visible during the cell cycle. The second group comprises five species (Otiorhynchus niger, O. morio, Polydrusus corruscus, Barypeithes chevrolati, Nedyus quadrimaculatus) which possess much larger heteropicnotic parts of chromosomes visible during all nuclear divisions. The species examined have paracentromeric C-bands on autosomes and the sex chromosome X, except for Otiorhynchus niger, which also has an intercalary bands on one pair of autososomes. All the species examined differ in the size of segments of constitutive heterochromatin. The y heterochromosome is dot-like and wholly euchromatic in all the studied species.  相似文献   

17.
Simultaneous measurement of DNA content in cell nuclei and condensed chromatin bodies formed by heterochromatized regions of sex chromosomes (gonosomal chromatin bodies, GCB) has been performed in two trophoblast cell populations of the East-european field vole Microtus rossiaemeridionalis, namely in the proliferative population of trophoblast cells of the junctional zone of placenta and in the secondary giant trophoblast cells. One or two gonosomal chromatin bodies have been observed in trophoblast cell nuclei of all embryos studied (perhaps both male and female), In the proliferative trophoblast cell population, characterized by low ploidy levels (2c-16c), and in the highly polyploid population of secondary giant trophoblast cells (16c-256c), the total DNA content in GCB increased proportionally to the ploidy level. In separate bodies, the DNA content rose also in direct proportion with the ploidy level seen in the nuclei with both one and two GCBs in the two trophoblast cell populations. A certain increase in percentage of the nuclei with 2-3 GCBs was shown in the nuclei of the junctional zone of placenta; this may be accounted for by genome multiplication via uncompleted mitoses. In the secondary giant trophoblast cell nuclei (16c-256c), the number of GCBs did not exceed 2, and the share of nuclei with two GCBs did not increase, thus suggesting the polytene nature of sex chromosome in these cells. At different poloidy levels, the ratio of DNA content in the nucleus to the total DNA content in GCB did not change significantly giving evidence of a regular replication of sex chromosomes in each cycle of genome reproduction. In all classes of ploidy, the mean total DNA content in trophoblast cell nuclei with single heterochromatic body was less than in the nuclei with two and more GCBs. This may indicate that a single GCB in many cases does not derive from the fusion of two GCBs. To put it another way, in the nuclei with one GCB and in those with two or more GCBs, different chromosome regions may undergo heterochromatization. The regularities observed here are, most probably, associated with the peculiarities in the structure of X- and Y-chromosomes in a range of species of Microtus (M. agrestis, M. rossiaemeridionalis, M. transcaspicus). As a result, gonosomal chromatin bodies may include large blocks of both constitutive heterochromatin of X- and Y-chromosomes (in male and female embryos) and inactivated euchromatin of "lyonized" X-chromosome in female embryos. Therefore the presence of two or more GCBs in trophoblast cells of M. rossiaemeridionalis may be accounted for by both polyploidy and functional state of the nucleus, in which gonosomal constitutive heterochromatin and inactivated euchromatin form two large chromocenters rather than one. The differences in DNA content in GCBs in the nuclei with one and two GCBs seem to be an indirect indication that the two chromocenters may be formed by two different gonosomes, with the extent of their heterochromatization being higher than that in the nuclei with one GCB. GCBs in the trophoblast cells of M. rossiaemeridionalis are observed not only at the early developmental stages, as it was observed in rat at the first half of pregnancy (Zybina and Mosjan, 1967), but also at the later stages, up to the 17th day of gestation. At these stages, the nuclei with non-classical polytene chromosomes rearrange to those with a great number of endochromosomes, probably because of disintegration of chromosomes into oligotene fibrils. However, it does not seem unlikely that this process may involve heterochromatized gonosomal bodies, since only one or two large GCBs can be seen in the nuclei as before. The presence of prominent blocks of constitutive heterochromatin seems to favor a closer association of sister chromatids in polytene chromosomes, which prevents their dissociation into endochromosomes with the result that polyteny of sex chromosomes in the field vole trophoblast is probably retained during a longer period of embryonic development.  相似文献   

18.
19.
What drives the dramatic changes in chromosome structure during the cell cycle is one of the oldest questions in genetics. During mitosis, all chromosomes become highly condensed and, as the cell completes mitosis, most of the chromatin decondenses again. Only chromosome regions containing constitutive or facultative heterochromatin remain in a more condensed state throughout interphase. One approach to understanding chromosome condensation is to experimentally induce condensation defects. 5-Azacytidine (5-aza-C) and 5-azadeoxycytidine (5-aza-dC) drastically inhibit condensation in mammalian constitutive heterochromatin, in particular in human chromosomes 1, 9, 15, 16, and Y, as well as in facultative heterochromatin (inactive X chromosome), when incorporated into late-replicating DNA during the last hours of cell culture. The decondensing effects of 5-aza-C analogs, which do not interfere with normal base pairing in substituted duplex DNA, have been correlated with global DNA hypomethylation. In contrast, decondensation of constitutive heterochromatin by incorporation of 5-iododeoxyuridine (IdU) or other non-demethylating base analogs, or binding of AT-specific DNA ligands, such as berenil and Hoechst 33258, may reflect an altered steric configuration of substituted or minor-groove-bound duplex DNA. Consequently, these compounds exert relatively specific effects on certain subsets of AT-rich constitutive heterochromatin, i.e. IdU on human chromosome 9, berenil on human Y, and Hoechst 33258 on mouse chromosomes, which provide high local concentrations of IdU incorporation sites or DNA-ligand-binding sites. None of these non-demethylating compounds affect the inactive X chromosome condensation. Structural features of chromosomes are largely determined by chromosome-associated proteins. In this light, we propose that both DNA hypomethylation and steric alterations in chromosomal DNA may interfere with the binding of specific proteins or multi-protein complexes that are required for chromosome condensation. The association between chromosome condensation defects, genomic instability, and epigenetic reprogramming is discussed. Chromosome condensation may represent a key ancestral mechanism for modulating chromatin structure that has since been realloted to other nuclear processes.  相似文献   

20.
Condensed Y chromosomes in Rumex acetosa L. root-tip nuclei were studied using 5-azaC treatment and immunohistochemical detection of methylated histones. Although Y chromosomes were decondensed within root meristem in vivo, they became condensed and heteropycnotic in roots cultured in vitro. 5-azacytidine (5-azaC) treatment of cultured roots caused transitional dispersion of their Y chromosome bodies, but 7 days after removal of the drug from the culture medium, Y heterochromatin recondensed and again became visible. The response of Rumex sex chromatin to 5-azaC was compared with that of condensed segments of pericentromeric heterochromatin in Rhoeo spathacea (Sw.) Steam roots. It was shown that Rhoeo chromocentres, composed of AT-rich constitutive heterochromatin, did not undergo decondensation after 5-azaC treatment. The Y-bodies observed within male nuclei of R. acetosa were globally enriched with H3 histone, demethylated at lysine 4 and methylated at lysine 9. This is the first report of histone tail-modification in condensed sex chromatin in plants. Our results suggest that the interphase condensation of Y chromosomes in Rumex is facultative rather than constitutive. Furthermore, the observed response of Y-bodies to 5-azaC may result indirectly from demethylation and the subsequent altered expression of unknown genes controlling tissue-specific Y-inactivation as opposed to the global demethylation of Y-chromosome DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号