首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Saltz  David  Ward  David 《Plant Ecology》2000,148(2):127-138
We examined the effects of herbivory by the dorcas gazelle, Gazella dorcas, on different phenological stages of the lily Pancratium sickenbergeri from 1990–1996 in the Negev desert, Israel. We placed particular emphasis on the role of gazelle herbivory on selecting for plant defences and the effectiveness of these defences against subsequent herbivory. In the summer months, the gazelles dig in the sand to remove all or part of the bulb of the lily. Plants with partially-consumed bulbs were less likely to produce leaves the following winter and probably have lower lifetime flower production. Herbivory has resulted in greater downward growth of the bulb in populations with herbivory than those without herbivory, which reduces the probability that the entire plant will be consumed. Gazelles eat the leaves in the winter; this herbivory has a negative impact on leaf growth rates. However, the production of calcium oxalate limits gazelle consumption to the tips, and consequently reduces the effects of leaf herbivory. In the fall, the gazelles consumed virtually all flowers, yet we found no defence or growth strategy that might ameliorate this impact, with the possible exception of forgoing the output of a second flower stalk after the first has been consumed. The results of this study suggest that lilies employ different strategies to resist gazelle herbivory, and that these strategies are dependent on the phenological stage that is eaten. Avoidance by defence is the strategy in the leaves, avoidance by escape is utilized in bulbs. Forgoing the output of a second flower stalk after the first has been consumed can be considered as a form of escape based on a bet-hedging strategy or a shift in energy allocation.  相似文献   

2.
Two experiments were conducted to examine the response of Rudbeckia hirta to limited inductive photoperiodic treatments. The first examined the effects on plants grown to an thesis of the second axillary inflorescence, and the second examined the early histological events within the meristem. Plants of Rudbeckia hirta were grown to maturity under short days (SD). At maturity, half the plants were placed in long days (LD). In the first experiment, the plants remained under LD for 0, 8, 16, 24, or 32 days before being returned to SD with an additional group remaining under LD as a control. In the second experiment, the plants remained under LD for 0, 4, 8, 12, 16, 20, 24, or 28 days before being returned to SD. Meristems were sampled 0, 4, 8, or 12 days after return to SD and histologically examined. Four groups of plants receiving 32, 36, 40, or 44 LD were used as a continuous LD control. When grown to anthesis, plant height and branch number increased as the number of inductive cycles increased. Plants receiving 24 or more LD reached anthesis earlier than plants receiving fewer LD. Histological examination of plants receiving only 4 LD showed they never progressed beyond early floral initiation. After 12 LD, the meristems continued to develop even when returned to SD, indicating that enough of the floral stimulus had reached the meristem to initiate flowering. Once involucral bract primordia initiated, floral development continued whether in LD or SD conditions.  相似文献   

3.
Identifying the factors that affect a plant’s probability of being found and damaged by herbivores has been a central topic in the study of herbivory. Although herbivory could have important negative consequences on carnivorous plants, their interaction with herbivores remains largely unexplored. We evaluated the effect of spatial variation in light environment (sunny, shade and full-shade sites) on the pattern of leaf herbivory and florivory of the carnivorous plant Pinguicula moranensis. Plants’ overall probability of leaf damage was high (74.24%). Mean herbivory was four times higher in the sunny and shade sites than the observed in the full-shade site. Nearly 8% of plants suffered damage to reproductive structures, although the probability of florivory was similar among sites. Discussion addressed the inter-site variation in mean herbivory considering the effect of light exposure and the impact that herbivory could have on fitness components of this carnivorous plant.  相似文献   

4.
The growth and flowering response of a cold-requiring cauliflower (Brassica oleracea var. botrytis cv. 60 day) to a range of temperatures under 10 h photoperiod and to growth regulator application were investigated. Endogenous gibberellin A1(GA1) concentrations were also assessed under these treatments. Flowering and growth of the inflorescence stalk were correlated with plant developmental stage at the time of a vernalizing cold treatment. Temperature and its duration also affected flowering and inflorescence development. The most effective temperature for inflorescence induction was 10 °C. Flowering did not occur in non-vernalized plants (25 °C) even though they had been treated with GA3. Application of GA3 promoted inflorescence stalk elongation greatly in vernalized plants (10 °C), but less so in partially vernalized plants (15 °C or 20 °C). Paclobutrazol (PP333) sprayed at the 8–9 leaf stage significantly suppressed inflorescence stalk length and slightly delayed flower bud formation and anthesis. Vernalization at 10 °C increased endogenous GA1 content in both leaves and the inflorescence stalk irrespective of GA3 or PP333 treatment. Application of GA3 tended to increase GA1 levels, while PP333 significantly reduce GA1, both irrespective of vernalization. Vernalization is an important factor for flowering, but not curd formation in this cauliflower cv. 60 day and GA1 is likely a causal factor in inflorescence stalk elongation.  相似文献   

5.
Kasey E. Barton 《Oikos》2008,117(6):917-925
Phenotypic plasticity in growth (leading to compensation) and secondary chemical production (leading to induction) in response to herbivory are key defense strategies in adult plants, but their role in seedling defense remains unclear. A pair of greenhouse studies was conducted to investigate compensation and induction in seedlings and juvenile plants, using Plantago lanceolata (Plantaginaceae) and the specialist buckeye caterpillar Junonia coenia (Nymphalidae) as a model system. Plants received 50% defoliation at two and four weeks of age, and groups of plants were harvested one week after herbivory and six to eight weeks after herbivory to investigate the duration of the responses. Plants damaged at two weeks showed no chemical induction and fully compensated for the lost leaf tissue by ten weeks of age. Plants damaged at four weeks showed a significant reduction in iridoid glycosides one week after herbivory and achieved full shoot compensation by ten weeks of age at the expense of root biomass. These results indicate that P. lanceolata seedlings use compensation, but not chemical induction, as a defense strategy. This research highlights the importance of considering ontogeny in studies of plant–herbivore interactions and suggests that seedling defense may differ markedly from adult plant defense.  相似文献   

6.
Variation in flowering by long-lived plants may be correlated with current resource availability. If, however, there are trade-offs between current and future reproduction, or between reproduction and storage or growth, then understanding variation requires a whole-plant, longer-term perspective. Inflorescence production by Calyptrogyne ghiesbreghtiana Linden ex. H. Wendl., an understory palm, was studied over 3 years. Annual inflorescence production varied greatly and was correlated with variation in plant size and light environment. There was no trade-off between past inflorescence production and the frequency of future inflorescence production. On the contrary, individuals that produced more inflorescences than predicted from their size and light environment tended to continue to do so in subsequent years also. I manipulated the resource environment of a subset of plants by removal of leaves and/or reproductive spikes. Leaf removal suppressed inflorescence production for the following 2 years, but spike removal had no effect. One year after leaf removal stored reserves were, on average, back to pre-treatment levels. There was, however, a negative effect of recent inflorescence production on storage. Plants with higher levels of storage had higher inflorescence production in the next 75 days. In C. ghiesbreghtiana the resource cost of reproduction is apparent in short-term variation in stored reserves. In contrast, annual inflorescence production does not follow a trade-off pattern between successive years, but consistently reflects both plant size and the light environment. Received: 20 October 1996 / Accepted: 25 January 1997  相似文献   

7.
Release from natural enemies is frequently cited as an important factor contributing to plant invasions. But such effects are likely to be temporary—native herbivores can form new plant-herbivore associations and co-evolved insects might reach the new range. While the potential effects of the initial enemy release have been well studied, the consequences of any resumption of herbivory are poorly understood. Alternanthera philoxeroides is one of the most widespread invasive plants in China and is attacked both by a specialist herbivore introduced from the native range, Agasicles hygrophila, and a native beetle Cassida piperata Hope which has formed a new association. However, these insects are not found throughout the invaded range. To test the effect of the history of population exposure to herbivory on compensatory ability, plants were cultured from 14 populations around China that differed in whether A. hygrophila or C. piperata were present. Treatment plants were exposed to herbivory by A. hygrophila for a week until 50% of the leaf area was defoliated, then grown for 80 days. Plants from populations with prior exposure to herbivory (of any kind) accumulated more root mass than populations without prior exposure, indicating that prior exposure to insects can stimulate plant compensation to herbivory. We would recommend that potential changes in plant tolerance in response to prior exposure to herbivory are considered in invasive plant management plans that employ bio-control agents.  相似文献   

8.
Abstract. 1. Plants may compensate for the effects of herbivory, especially under favourable growing conditions, limited competition, and minimal top‐down regulation. These conditions characterise many disturbed wetlands dominated by introduced plants, implying that exotic, invasive weeds in these systems should exhibit strong compensatory responses. 2. The Australian native Melaleuca quinquenervia is highly invasive in the Florida Everglades, U.S.A., where it experiences limited competition or herbivory from native species, making it a likely candidate for compensation. The introduced biological control agent Oxyops vitiosa feeds exclusively on the seasonal flushes of developing foliage at branch apices, which represents ≈15% of the total foliar biomass. 3. The hypothesis that M. quinquenervia compensates for folivory by O. vitiosa was tested in a series of field‐based experiments. Trees experiencing folivory over four consecutive years maintained similar levels of foliar biomass after attack yet possessed twice the number of leaf‐bearing terminal stems as undamaged trees. The biomass of these stems was similar among attacked and unattacked trees, indicating that herbivore‐damaged trees produce greater quantities of smaller terminal branches. However, undamaged trees were 36 times more likely to reproduce than herbivore‐damaged trees. 4. In a separate herbivore exclusion study, a single bout of herbivory on previously undamaged M. quinquenervia trees caused an 80% reduction in reproductive structures the following season. Herbivore‐damaged trees also possessed 54% fewer fruits than undamaged trees. An increase in the herbivory frequency (two bouts per year) or magnitude (100% simulated herbivory) did not result in a further reduction in fitness. 5. It has been concluded that M. quinquenervia partially compensates for herbivory by producing new stems and replacing foliage, but this compensation results in a substantial reduction in reproduction.  相似文献   

9.
Browsing intensity influences a plant's response to herbivory. Plants face a trade-off between investment in the production of secondary compounds and investment in growth. To elucidate this trade-off, we simulated four browsing intensities (0%, 50%, 75% and 100%) on mopane saplings, Colophospermum mopane (J.Kirk ex Benth.) J.Léonard, in a greenhouse experiment. This showed that, with increasing defoliation intensity, plants change their investment strategy. At intermediate levels of defoliation (50%), mopane saplings increased the synthesis of condensed tannins, so that tannin concentrations followed a hump-shaped relation with defoliation intensity, with significantly higher tannin concentration at intermediate defoliation levels. When defoliated heavily (75% and 100%), tannin concentrations dropped, and plants were carbon stressed as indicated by a reduced growth rate of the stem diameter, and leaf production and mean individual leaf mass were reduced. This suggests that, at intermediate defoliation intensity, the strategy of the plants is towards induced chemical defences. With increasing defoliation, the relative costs of the secondary metabolite synthesis become too high, and therefore, the plants change their growing strategy. Hence, browsers should be able to benefit from earlier browsing by either adopting a low or a relatively high browsing pressure.  相似文献   

10.
We used ecotypic variation in big sagebrush (Artemisia tridentata) to examine potential trade-offs between inherent growth rate and tolerance or resistance to herbivory. Seeds were obtained from seven geographic populations, and 1,120 seedlings were established in a common garden. In one set of plots, plants were subjected to five treatments: control, regular insecticide spray, moderate browsing, severe browsing, or moderate browsing plus insecticide. Plants in a second set of plots were all untreated, and were used to estimate ambient growth, flower production, and susceptibility to herbivorous insects. In the first growing season, population differences in relative growth rate produced approximately seven-fold variation in mean biomass. Two populations of basin big sagebrush (A. tridentata tridentata) and one population of mountain big sagebrush (A. tridentata vaseyana) grew fastest; those of Wyoming big sagebrush (A. tridentata wyomingensis) showed the slowest growth. Bi-weekly application of insecticide for two growing seasons had no effect on the growth of either browsed or unbrowsed plants. All populations showed compensatory growth (but not overcompensation) in response to browsing, but the degree of compensation was unrelated to inherent growth rate. Similarly, there was no consistent relationship between plant growth rate and flower production in the second growing season. Some insects colonized fast-growing populations more frequently than slow-growing ones, but patterns of insect colonization were species-specific. At the level of geographic populations and subspecies, we found little evidence of a built-in trade-off between inherent growth rate and the ability to tolerate or resist herbivory. Because population ranks for growth rate changed substantially between seasons, attempts to correlate growth and defense characters need to account for differences in the growth trajectories of perennial plants.  相似文献   

11.
Although herbivores often have a negative impact on plant fitness, sometimes plants may benefit from their consumers. However, these positive interactions usually occur as a result of plant damage (e.g., overcompensation, defense induction). I present evidence of a novel way by which plants may benefit from their consumers without being eaten. Plants of Carduus nutans increased their physical defenses when grown in external refuse dumps of the leaf-cutting ant Acromyrmex lobicornis. Seedlings planted in refuse exhibited longer spines and tougher leaves than those planted in control soils. Pick-up assays with entire leaves and leaf discs demonstrated that these enhanced physical defenses prevented leaf-cutting ant harvest. Additionally, plants established in refuse dumps showed fewer insect herbivory than those in non-nest soils. The nutrient-rich refuse dump appeared to reduce the stage at which leaves are tender and thus more vulnerable to herbivory. This is the first case where plants may benefit from insect herbivores via waste products without the cost of being eaten. This illustrates how plants may plastically respond to reliable cues of the risk of herbivory.  相似文献   

12.
S. Arizaga  E. Ezcurra 《Oecologia》1995,101(3):329-334
Bulbils are small aerial rosettes that occur on the flowering stalks of semelparous Agave plants and in related families, and that are capable of acting as clones of the parent plant. We hypothesized that bulbil formation was inversely related to fruiting success in the flowering stalk, and we explored this hypothesis in A. macroacantha, a species from South-Central Mexico. Forty randomly chosen plants were divided amongst three treatments: (a) elimination of all floral buds, (b) exclusion of pollinators, and (c) control. We also studied 22 plants in which the flowering stalk had been felled by goat grazing. Between September and November 1991 we kept a record of the numbers of bulbils and capsules produced in each flowering stalk. Significant (P<0.0001) differences between treatments were found in the proportion of plants hearing capsules and bearing bulbils. The control treatment had the highest proportion of plants producing capsules, treatment a had the highest proportion of individuals bearing bulbils, while treatment b showed an intermediate response. In the goat-grazed group, 45% of the plants failed to produce any propagative structure after the stalk was cut, and half of all plants produced bulbils on the remaining stump. A significant inverse relationship between the numbers of capsules and the numbers of bulbils per plant was found for the three randomly assigned treatments. Our results suggest that once the production of the flowering stalk has been triggered and the death of the rosette is irreversible, bulbils may act as an insurance mechanism that increases the probability of successful reproduction of the genet.  相似文献   

13.
The roles of herbivory and pollination success in plant reproduction have frequently been examined, but interactions between these two factors have gained much less attention. In three field experiments, we examined whether artificial defoliation affects allocation to attractiveness to pollinators, pollen production, female reproductive success and subsequent growth in Platanthera bifolia L. (Rich.). We also recorded the effects of inflorescence size on these variables. We studied the effects of defoliation on reproductive success of individual flowers in three sections of inflorescence. Defoliation and inflorescence size did not have any negative effects on the proportion of opened flowers, spur length, nectar production or the weight of pollinia. However, we found that hand-pollination increased relative seed production and defoliation decreased seed set in most cases. Interactions between hand-pollination and defoliation were non-significant indicating that defoliation did not affect female reproductive success indirectly via decreased pollinator attraction. Plants with a large inflorescence produced relatively more seeds than plants with a small inflorescence only after hand-pollination. The negative effect of defoliation on relative capsule production was most clearly seen in the upper sections of the inflorescence. In addition to within season effects of leaf removal, defoliated P. bifolia plants may also have decreased lifetime fitness as a result of lower seed set within a season and because of a lower number of reproductive events due to decreased plant size (leaf area) following defoliation. Our study thus shows that defoliation by herbivores may crucially affect reproductive success of P. bifolia.  相似文献   

14.
Plants are able to cope with herbivores by inducing defensive traits or growth responses that allow them to reduce or avoid the impact of herbivores. Since above‐ and belowground herbivores differ substantially in life‐history traits, for example feeding types, and their spatial distribution, it is likely that they induce different responses in plants. Moreover, strong interactive effects on defense and plant growth are expected when above‐ and belowground herbivores are jointly present. The strengths and directions of these responses have been scarcely addressed in the literature. Using Taraxacum officinale, the root‐feeding nematode Meloidogyne hapla and the locust Schistocerca gregaria as a model species, we examined to what degree above‐ and belowground herbivory affect (1) plant growth responses, (2) the induction of plant defensive traits, that is, leaf trichomes, and (3) changes in dispersal‐related seed traits and seed germination. We compared the performance of plants originating from different populations to address whether plant responses are conserved across putative different genotypes. Overall, aboveground herbivory resulted in increased plant biomass. Root herbivory had no effect on plant growth. Plants exposed to the two herbivores showed fewer leaf trichomes than plants challenged only by one herbivore and consequently experienced greater aboveground herbivory. In addition, herbivory had effects that reached beyond the individual plant by modifying seed morphology, producing seeds with longer pappus, and germination success.  相似文献   

15.
Plants in nature are attacked sequentially by herbivores, and theory predicts that herbivore-specific responses allow plants to tailor their defenses. We present a novel field test of this hypothesis, and find that specific responses of Solanum dulcamara lead to season-long consequences for two naturally colonizing herbivores, irrespective of the second herbivore to attack plants. This result indicates that responses induced by the initial herbivore made plants less responsive to subsequent attack. We show that initial herbivory by flea beetles and tortoise beetles induce distinct plant chemical responses. Initial herbivory by flea beetles lowered the occurrence of conspecifics and tortoise beetles relative to controls. Conversely, initial herbivory by tortoise beetles did not influence future herbivory. Remarkably, the experimentally imposed second herbivore to feed on plants did not modify consequences (induced resistance or lack thereof) of the first attacker. Induction of plant chemical responses was consistent with these ecological effects; i.e. the second herbivore did not modify the plant's initial induced response. Thus, canalization of the plant resistance phenotype may constrain defensive responses in a rapidly changing environment.  相似文献   

16.
Abstract The time during which pollen development is most sensitive to chilling was investigated. Five cultivars of tomato (Lycopersicon esculentum Mill.) bearing flower buds at different stages of development were kept at 7°C for 1 week under 12-h light periods, during which time growth stopped. After returning the plants to minimum temperatures of 18°C, the presence of chromatin in the pollen was assessed daily as the flowers reached anthesis. The results suggested that there are two stages of acute sensitivity to cold during pollen development, each of which results in cold-stressed plants having pollen empty of chromatin. The first and most sensitive stage is about 11.2 d (SE = 0.3 d) before anthesis, and this is followed by a second stage of sensitivity about 5.6±0.2 d before anthesis. Flowers that had wholly developed under simulated natural temperatures that decreased diurnally from a maximum of 18°C to a minimum of 7°C also had defective pollen, but pollen of normal appearance was regained within 14°d on return to higher temperatures. Plants of L. esculentum, and a form (LA 1363) of the wild species L. hirsutum from high altitudes in the Andes, as well as F1 and F3 generations of their hybrid, were grown to the flowering stage at an altitude of 600 m in Hawaii and then grown for a further 30°d at 2000 m, where night temperature was below 10°C. The high altitude environment severely affected the quality of pollen produced and its release from the stamen in L. esculentum, but not in L. hirsutum LA 1363. The results with the hybrids suggested that such tropical mountain environments can be used as a natural phytotron in the selection of chilling resistance that is only expressed in the mature plant.  相似文献   

17.
Reproductive success of Calopogon tuberosus, which produces no nectar, was investigated in relation to inflorescence size and dispersion pattern. Mean inflorescence size was 2.56 (range 1–10). A bagging experiment showed that insects are required for pollen transfer and that fruits are produced from self-, geitonogamous, and cross-pollinations; fruit set was not 100%. Fruit set of nonmanipulated plants was limited by the number of pollinator visits. Reproductive success increased with increasing inflorescence size, although not above theoretical predictions. However, the probability of producing no fruit or contributing no pollinia decreased with increasing inflorescence size since sequential flowering increased the probability of a pollinator visit to the inflorescence over the blooming period. Large inflorescences did not provide a greater pollinator attraction than small ones, because inflorescences only presented a few open flowers at a time. In addition, flowers on plants growing in clumps of 2–8 plants had a higher probability of setting fruit, apparently because of increased pollinator attraction. Although there are obvious selective advantages for large inflorescences, the sequential flowering habit, and low resource availability may reduce the advantages of large inflorescence size at our study site.  相似文献   

18.
Sharaf KE  Price MV 《Oecologia》2004,138(3):396-404
Ungulate browsing of flowering stalks of the semelparous herb Ipomopsis aggregata leads to regrowth of lateral inflorescences, a response that has been reported to yield overcompensation in some cases (browsed plants with higher reproductive success than unbrowsed), but undercompensation in others. Little is known about the mechanisms that cause such variable tolerance to herbivory. We explored one possible mechanism—variation in effects of browsing on pollination—by clipping I. aggregata inflorescences to mimic browsing, observing subsequent visits by pollinators and nectar-robbers, and adding pollen by hand to flowers of some clipped and unclipped plants. Clipping reduced floral display size and increased inflorescence branching, but neither hummingbirds, the primary pollinators, nor nectar-robbing bumblebees showed any preference for unclipped versus clipped plants. Clipping delayed flowering; this shift in phenology caused clipped plants to miss the peak of hummingbird activity and to have lower per-flower visitation rates than unclipped controls in one year, but to have greater overlap with birds and higher visitation rates in the subsequent year. In three sites and 2 years, clipped plants exposed to natural pollination suffered extreme undercompensation, producing on average only 16% as many seeds as unclipped controls. This was not directly attributable to clipping effects on pollination, however, because clipped plants were unable to increase fecundity when provided with supplemental pollen by hand. Taken altogether, our results suggest that compensation was constrained less by indirect effects of browsing on pollination than by its direct impacts on resource availability and hence on the ability of plants to regrow lost inflorescence tissue and to fill seeds. Exploring the physiological and developmental processes involved in regrowth of inflorescences and provisioning of seeds is a promising future direction for research designed to understand variation in browsing tolerance.  相似文献   

19.
Plants respond to feeding by herbivorous insects by producing volatile organic chemicals, which mediate interactions between herbivores and plants. Yet, few studies investigated whether such plant responses to herbivory differ between historical host and novel plants. Here, we investigated whether herbivory by the pine weevil Hylobius abietis causes a release of volatile organic chemicals from a novel tree Pinus brutia and compared the relative amounts of volatiles released from herbivore's historical hosts and P. brutia. We collected volatiles emitted from P. brutia seedlings that were either subjected to feeding by H. abietis or no feeding. Our results indicated that feeding increased emission of volatile compounds, composed of monoterpenes and sesquiterpenes, and that the emission was several fold higher in the damaged seedlings than in undamaged seedlings. In particular, emission of monoterpenes and sesquiterpenes increased by 4.4‐and 10‐fold in the damaged plants, respectively. Strikingly, individual monoterpenes and sesquiterpenes showed much greater dissimilarity between damaged and undamaged seedlings. Furthermore, several minor monoterpenes showed negative relationships with the weevil gnawed area. We discussed these results with the results of previous studies focused on historical host plants of H. abietis and hypothesized the ecological relevance and importance of our results pertaining relevance to the plant–herbivory interactions.  相似文献   

20.
The results of ecological interactions depend on the costs and benefits involved in different ecological contexts. Turnera subulata is a shrubby plant with extrafloral nectaries that are associated with ants. Here, we test the hypotheses that the association between Tsubulata and ants results in: (i) positive effects on host plant growth and reproduction; (ii) plant herbivory reduction and (iii) inhibition of the host plant visitation by beneficial organisms. Thirty experimental plots were established in northeastern Brazil, either in association with ants or without ants (N = 15 plots/treatment), with four plants each (total 120 plants). Vegetative growth (plant height and number of leaves), reproductive investment (flowers and fruits), herbivory rates and numbers of beneficial visitors were quantified during all phenological stages of the host plant. Data were analysed using generalized linear mixed models. At the host plant maturation stage, we found a trade‐off between growth and reproduction. Plants with ants had lower mean height; however, they invested more in reproduction (a higher number of flowers and fruits) compared to plants without ants. During the flowering stage, the abundance of sucking herbivores was higher in plots without ants but chewing herbivore abundance increased in the maturation stage in plots with ants. The cumulative proportion of leaves with herbivore damage did not differ between treatments, and the presence of ants reduced the number of beneficial visitors (e.g. pollinators and natural enemies) to the host plants. Our results show that association with ants results in some costs for the host plant, however, these costs appear to be offset by the defensive role of ants, which favours plant reproductive investment. In general, our results help to elucidate mechanisms involved in trophic interactions within the complex network of interactions involving ants and plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号