首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Contributions of Sea Ice Algae to Antarctic Marine Primary Production   总被引:7,自引:1,他引:6  
The seasonally ice-covered regions of the Southern Ocean havedistinctive ecological systems due to the growth of microalgaein sea ice. Although sea ice microalgal production is exceededby phytoplankton production on an annual basis in most offshoreregions of the Southern Ocean, blooms of sea ice algae differconsiderably from the phytoplankton in terms of timing and distribution.Thus sea ice algae provide food resources for higher trophiclevel organisms in seasons and regions where water column biologicalproduction is low or negligible. A flux of biogenic materialfrom sea ice to the water column and benthos follows ice melt,and some of the algal species are known to occur in ensuingphytoplankton blooms. A review of algal species in pack iceand offshore plankton showed that dominance is common for threespecies: Phaeocystis antarctica, Fragilariopsis cylindrus andFragilariopsis curta. The degree to which dominance by thesespecies is a product of successional processes in sea ice communitiescould be an important in determining their biogeochemical contributionto the Southern Ocean and their ability to seed blooms in marginalice zones.  相似文献   

2.
The abundance and species composition of phytoplankton were investigated at stations in a permanently ice-free (61°S) and seasonally ice-covered area (64°S and 66°30′S) in the eastern Indian sector of the Southern Ocean between November 2001 and March 2002. Although a phytoplankton bloom occurred just after retreat of the sea ice at both stations in the seasonally ice-covered area, vertical stability of the water column during the bloom was weak at the most southerly station. This shows that a bloom can form even under weak vertical stability. In the bloom, diatoms dominated under weak vertical stability and Phaeocystis under strong vertical stability. In the latter case, ice algae largely contributed to development of the bloom. In the later observation period, a subsurface chlorophyll maximum (SCM) was observed at 61°S and 64°S. Species composition was different between the mixed layer and SCM at 64°S, but was uniform with depth at 61°S, indicating that the SCM is formed by different mechanisms.  相似文献   

3.
During the late winter and spring of 1994, the influence of sea ice on phytoplankton succession in the water was studied at a coastal station in the northern Baltic Sea. Ice cores were taken together with water samples from the underlying water and analysed for algal composition, chlorophyll a and nutrients. Sediment traps were placed under the ice and near the bottom, and the sedimented material was analysed for algal composition. The highest concentration of ice algae (4.1 mmol C m−2) was found shortly before ice break-up in the middle of April, coincidental with the onset of an under-ice phytoplankton bloom. The ice algae were dominated by the diatoms Chaetoceros wighamii Brightwell, Melosira arctica (Ehrenberg) Dickie and Nitzschia frigida Grunow. Under the ice the diatom Achnanthes taeniata Grunow and the dinoflagellate Peridiniella catenata (Levander) Balech were dominant. Calculations of sinking rates and residence times of the dominant ice algal species in the photic water column indicated that only one ice algal species (Chaetoceros wighamii) had a seeding effect on the water column: this diatom dominated the spring phytoplankton bloom in the water together with Achnanthes taeniata and Peridiniella catenata. Received: 9 May 1997 / Accepted: 15 February 1998  相似文献   

4.
The marine ecosystem in Kongsfjorden (79°N), a glacial fjord in Svalbard, is to a large extent well known with regard to hydrography, mesozooplankton and higher trophic levels. Research on primary production and lower trophic levels is still scare and especially investigations from winter and spring periods. The spring bloom dynamics in Kongsfjorden were investigated in 2002. The development in nutrient conditions, phytoplankton, protozoans and primary production were followed from 15 April until 22 May. The winter/spring in 2002 was categorized as a cold year with sea ice cover and water masses dominated by local winter-cooled water. The spring bloom started around 18 April and lasted until the middle of May. The bloom probably peaked in late April, but break-up of sea ice made it impossible to sample frequently in this period. Diatoms dominated the phytoplankton assemblage. We estimated the total primary production during the spring bloom in 2002 to range 27–35 g C m−2. There was a mismatch situation between the mesozooplankton and the phytoplankton spring bloom in 2002.  相似文献   

5.
The copepod Calanus glacialis plays a key role in the lipid-based energy flux in Arctic shelf seas. By utilizing both ice algae and phytoplankton, this species is able to extend its growth season considerably in these seasonally ice-covered seas. This study investigated the impacts of the variability in timing and extent of the ice algal bloom on the reproduction and population success of C. glacialis. The vertical distribution, reproduction, amount of storage lipids, stable isotopes, fatty acid and fatty alcohol composition of C. glacialis were assessed during the Circumpolar Flaw Lead System Study. Data were collected in the Amundsen Gulf, south-eastern Beaufort Sea, from January to July 2008 with the core-sampling from March to April. The reduction in sea ice thickness and coverage observed in the Amundsen Gulf in 2007 and 2008 affected the life strategy and reproduction of C. glacialis. Developmental stages CIII and CIV dominated the overwintering population, which resulted in the presence of very few CV and females during spring 2008. Spawning began at the peak of the ice algal bloom that preceded the precocious May ice break-up. Although the main recruitment may have occurred later in the season, low abundance of females combined with a potential mismatch between egg production/development to the first feeding stage and phytoplankton bloom resulted in low recruitment of C. glacialis in the early summer of 2008.  相似文献   

6.
何剑峰 《生态学报》2004,24(4):750-754
近年来随着北极地区的开放和全球变化对北极地区生态环境和海冰现存量的影响日益显现,北极浮冰生态学研究得到了广泛的重视和实质性的进展.最新研究结果显示,浮冰本身包含了一个复杂的生物群落,高纬度浮冰生物群落的初级产量远高于原先的估算,浮冰生物群落在北极海洋生态系统中的作用被进一步确认.但由于对浮冰生物群落的研究受后勤保障条件的制约,目前尚有大量科学问题有待今后进一步深入研究,预期我国科学家将在其中做出贡献.  相似文献   

7.
The seasonal variation and the vertical distribution of the phytoplanktonic population of the lagoon of Cullera, an elongated coastal lagoon with estuarine circulation of water, has been studied in three sampling stations: mouth, centre and source. Seasonal variation is determined by a marine-freshwater interaction. In winter, the sea influence is important, a marine water wedge of anoxic water arrives at the sampling station located at the source and marine and brackish water species dominate the phytoplankton. Also marine species of zooplankton and fish enter the system, which may then be considered as exploited by the sea. In spring the marine wedge retreats from the source but remains in the centre and mouth, salinity diminishes, vertical mixing persists and phytoplankton is dominated by Cyclotella species. From late spring to autumn the freshwater influence prevails and a sharp stratification of the water is produced in the stations at the mouth and the centre, by means of a steep halocline coincident with an oxycline. The phytoplankton in this period follows a typical succession like those described in freshwater eutrophic lakes. Vertical distribution of phytoplankton is determined by the presence of the oxycline, originated by the marine water wedge, whose depth varies seasonally but which is always present in the mouth and centre of the lagoon; only few species of algae can be found below its level.  相似文献   

8.
The Arctic bloom consists of two distinct categories of primary producers, ice algae growing within and on the underside of the sea ice, and phytoplankton growing in open waters. Long chain omega‐3 fatty acids, a subgroup of polyunsaturated fatty acids (PUFAs) produced exclusively by these algae, are essential to all marine organisms for successful reproduction, growth, and development. During an extensive field study in the Arctic shelf seas, we followed the seasonal biomass development of ice algae and phytoplankton and their food quality in terms of their relative PUFA content. The first PUFA‐peak occurred in late April during solid ice cover at the onset of the ice algal bloom, and the second PUFA‐peak occurred in early July just after the ice break‐up at the onset of the phytoplankton bloom. The reproduction and growth of the key Arctic grazer Calanus glacialis perfectly coincided with these two bloom events. Females of C. glacialis utilized the high‐quality ice algal bloom to fuel early maturation and reproduction, whereas the resulting offspring had access to ample high‐quality food during the phytoplankton bloom 2 months later. Reduction in sea ice thickness and coverage area will alter the current primary production regime due to earlier ice break‐up and onset of the phytoplankton bloom. A potential mismatch between the two primary production peaks of high‐quality food and the reproductive cycle of key Arctic grazers may have negative consequences for the entire lipid‐driven Arctic marine ecosystem.  相似文献   

9.
The seasonal distribution of autotrophic picoplankton in Lake Constance was investigated over four consecutive years. Cell numbers varied seasonally and vertically over four orders of magnitude (102 to 106 cells ml−1). A horizontal variation by a factor of 3 in abundance and biomass across the different parts of the lake was found during summer stratification. Picoplankton peaks occurred during the phytoplankton spring bloom and in late summer. Low values were characteristic for the clear-water phase in early summer and for autumn-winter. This seasonal pattern differed from that of larger phytoplankton in Lake Constance and from the seasonal distribution of picoplankton known from other lakes and marine environments. Picoplankton was predominated by chroococcoid cyanobacteria of about 0.6 μ3 biovolume. The average cell size increased from winter until early summer. Using HPLC pigment analysis, we identified zeaxanthin and β-carotene as typical picoplankton pigments. Results of the pigment analyses suggest that algae others than picocyano-bacteria may be more prominent in the picoplankton size class than derived from routine epifluorescence counting.  相似文献   

10.
Sea ice microalgae are released from their relatively stable light environment to the water column seasonally, and any subsequent growth in a vertically mixed water column may depend, in part, on their photoadaptation rates. In this study we followed the time course of photoadaptation in natural sea ice algal communities from bottom ice and surface ice by measuring their photophysiological response to an artificial shift in the ambient irradiance field. Microalgae from under-ice habitats, were incubated under full sunlight (LL-HL) and microalgae from surface ice habitats were incubated under artificial light to mimic under-ice irradiance (HL-LL). During 3- to 4-day time course studies, opposite shifts in chlorophyll: carbon, α, PBm, and Ik were observed, depending on the direction of the irradiance change. First-order rate constants (k) ranged from 0.0067 to 0.29 h?1 for photosynthetic parameters, although PBm did not always show a clear change over time. Rates of photoadaptation for ice algae are comparable to k values reported for temperate phytoplankton, suggesting that sea ice algae may be equally capable of adapting to the light conditions experienced in a vertically mixed water column. This study presents the first evidence that sea ice microalgae are physiologically capable of adapting to a planktonic life and thus could serve as a seed population for polar marine phytoplankton blooms.  相似文献   

11.
Microalgal assemblages from the bottom ice, the ice-water interface and the water column were systematically sampled from April to June 1986, in southeastern Hudson Bay (Canadian Arctic). The taxonomic similarity between samples from the three environments was assessed using a clustering procedure. There were two groups that comprised samples from both the ice-water interface and the water column, while five other groups were made of samples originating from a single environment. Taxonomic compositions of the two mixed groups suggest two types of connexion between the ice-water interface and the water column, i.e. before the phytoplankton bloom, there was seeding of the water column by ice algae and, during ice melt, interfacial algae contributed to the water column communities that were otherwise typically phytoplankton. Overall, the phytoplankton community underwent a succession from pennate to centric diatoms. Sinking rates of algae from the ice-water interface were estimated using settling columns (SETCOL). The sinking rates increased seasonally (0.4–2.7 m d–1), which enhanced accessibility of ice-algal cells to the pelagic grazers. Ice algae contributed to water column production as they became accessible to the pelagic grazers, and also by seeding the water column before the phytoplankton bloom.Contribution to the programs of GIROQ (Groupe interuniversitaire de recherches océanographiques du Québec) and of the Maurice Lamontagne Institute (Department of Fisheries and Oceans)  相似文献   

12.
This study documents, for the first time, the abundance and species composition of protist assemblages in Arctic sea ice during the dark winter period. Lack of knowledge of sea-ice assemblages during the dark period has left questions about the retention and survival of protist species that initiate the ice algal bloom. Sea-ice and surface water samples were collected between December 27, 2007 and January 31, 2008 within the Cape Bathurst flaw lead, Canadian Beaufort Sea. Samples were analyzed for protist identification and counts, chlorophyll (chl) a, and total particulate carbon and nitrogen concentrations. Sea-ice chl a concentrations (max. 0.27 μg l−1) and total protist abundances (max. 4 × 103 cells l−1) were very low, indicating minimal retention of protists in the ice during winter. The diversity of winter ice protists (134 taxa) was comparable to spring ice assemblages. Pennate diatoms dominated the winter protist assemblage numerically (averaging 77% of total protist abundances), with Nitzschia frigida being the most abundant species. Only 56 taxa were identified in surface waters, where dinoflagellates were the dominant group. Our results indicate that differences in the timing of ice formation may have a greater impact on the abundance than structure of protist assemblages present in winter sea ice and at the onset of the spring ice algal bloom.  相似文献   

13.
Summary Factors influencing the fate of ice algae released from melting sea ice were studied during a R V Polarstern cruise (EPOS Leg 2) to the northwestern Weddell Sea. The large-scale phytoplankton distribution patterns across the receding ice edge and small-scale profiling of the water column adjacent to melting ice floes indicated marked patchiness on both scales. The contribution of typical ice algae to the phytoplankton was not significant. In experiments simulating the conditions during sea ice melting, ice algae revealed a strong propensity to form aggregates. Differences in the aggregation potential were found for algal assemblages collected from the ice interior and the infiltration layer. Although all algal species collected from the ice were also found in aggregates, the species composition of dispersed and aggregated algae differed significantly. Aggregates were of a characteristic structure consisting of monospecific microaggregates which are likely to have formed in the minute brine pockets and channels within the ice. Sinking rates of aggregates were three orders of magnitude higher than those of dispersed ice algae. These observations, combined with the negligible seeding effect of ice algae found during this study, suggest that ice algae released from the melting sea ice are subject to rapid sedimentation. High grazing pressure at the ice edge of the investigation area is another factor eliminating ice algae released during melting.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

14.
In spring, Arctic coastal fast ice is inhabited by high densities of sea ice algae and, among other fauna, juveniles of benthic polychaetes. This paper investigates the hypothesis that growth rates of juveniles of the common sympagic polychaete, Scolelepis squamata (Polychaeta: Spionidae), are significantly faster at sea ice algal bloom concentrations compared to concurrent phytoplankton concentrations. Juvenile S. squamata from fast ice off Barrow, Alaska, were fed with different algal concentrations at 0 and 5?°C, simulating ambient high sea ice algal concentrations, concurrent low phytoplankton concentrations, and an intermediate concentration. Growth rates, calculated using a simple linear regression equation, were significantly higher (up to 115?times) at the highest algal concentration compared to the lowest. At the highest algal concentration, juveniles grew faster at 5?°C compared to those feeding at 0?°C with a Q 10 of 2.0. We conclude that highly concentrated sea ice algae can sustain faster growth rates of polychaete juveniles compared to the less dense spring phytoplankton concentrations. The earlier melt of Arctic sea ice predicted with climate change might cause a mismatch between occurrence of polychaete juveniles and food availability in the near future. Our data indicate that this reduction in food availability might counteract any faster growth of a pelagic juvenile stage based on forecasted increased water temperatures.  相似文献   

15.
The primary production of bottom ice algae is an important food source for sympagic, pelagic and benthic organisms in the Arctic Ocean as well as Antarctic Ocean. Using 13C-15N isotope tracers, the recent ice algal production at Barrow during the spring season was lower in 2003 than three decades ago, although the maximum chlorophyll-a concentration for the bottom ice algae was similar to the values from previous studies. Estimated recent new and total production rates of the ice algae were 0.8 g C m- 2 yr- 1 and 2.0 g C m- 2 yr- 1 respectively, while the rates of water column phytoplankton were 0.2 g C m- 2 yr- 1 and 0.7 g C m- 2 yr- 1 for the spring sampling period in 2003. The ice algae contributed 74% of the pelagic primary production under the landfast sea ice at Barrow before the phytoplankton spring bloom. At the end of the season in 2003, a high carbon allocation of lipids in the ice algae was found. Three possible explanations- nutrient depletion, increasing light, and/or changes in species composition- were suggested for the high carbon incorporation into lipids. This high lipid synthesis of the bottom ice algae might be significant to zooplankton and benthic fauna grazers because lipids are the most energy dense biomolecules.  相似文献   

16.
Summary Sedimentation of phytoplankton provides food and energy for zoobenthic communities. In this study the rates, species composition and biomass of phytoplankton input to Frobisher Bay sediments were examined during ice (late November to July) and open water (late July to October) periods from 1982 to 1985. The rates were higher on the sea bed than at 20 m. The minimum rate (3x105 cells·m-2·day-1) of sedimentation occurred during the early part of the ice period. It increased as the ice thickened and reached a maximum of 2.8x108 cells·m-2·day-1 after the phytoplankton bloom at the beginning of the open water period in the first two weeks of August. The sedimented phytoplankton was dominated by diatoms, with a great majority of pennate species during the spring (April to June) and centric forms during the summer (July to August). Green flagellates, dinoflagellates and chrysophytes occurred as a low percentage of the total population in all seasons. Other indicators (chlorophyll a and phaeopigments) showed highest biomass levels in the deepest traps. They were consistently low during the winter (December to March) and reached their maxima during the open-water period of summer. Their abundance was correlated with the seasonal cycle of the phytoplankton in the water column.  相似文献   

17.
Metabolic diversity of heterotrophic bacterioplankton was tracked from early winter through spring with Biolog Ecoplates under the seasonally ice covered arctic shelf in the Canadian Arctic (Franklin Bay, Beaufort Sea). Samples were taken every 6 days from December 2003 to May 2004 at the surface, the halocline where a temperature inversion occurs, and at 200 m, close to the bottom. Despite the low nutrient levels and low chlorophyll a , suggesting oligotrophy in the winter surface waters, the number of substrates used (NSU) was greater than in spring, when chlorophyll a concentrations increased. Denaturing gradient gel electrophorisis analysis also indicated that the winter and spring bacterial communities were phylogenetically distinct, with several new bands appearing in spring. In spring, the bacterial community would have access to the freshly produced organic carbon from the early phytoplankton bloom and the growth of rapidly growing specialist phenotypes would be favoured. In contrast, in winter bacterioplankton consumed more complex organic matter originated during the previous year's phytoplankton production. At the other depths we tested the NSU was similar to that for the winter surface, with no seasonal pattern. Instead, bacterioplankton metabolism seemed to be influenced by resuspension, advection, and sedimentation events that contributed organic matter that enhanced bacterial metabolism.  相似文献   

18.
于2006年5月至2007年2月之间,对南麂列岛海域的浮游植物类群进行了4个季节的调查,分析了该海域浮游植物的种类组成、优势种类、群落结构以及水平分布等特征参数的季节变化。共鉴定浮游植物80种,隶属于4个门,硅藻种类最多,甲藻其次。浮游植物可划分为3个生态类群,以广温类群为主。春季和夏季分别以三角棘原甲藻和中肋骨条藻为绝对优势种,秋冬季的优势种类组成多样化。共鉴定57种赤潮生物,占浮游植物种类数的71.25%。调查期间,三角棘原甲藻和中肋骨条藻分别于春季和夏季形成赤潮。浮游植物的物种丰富度呈现春、夏、秋、冬递减的趋势。浮游植物细胞丰度的年平均值为1.03×106cells/L,春夏季显著高于秋冬季。春季和夏季时,浮游植物高值区集中在南麂岛西北近岸海域;秋季和冬季时,浮游植物高值区相对集中在南麂岛东南近岸海域。浮游植物群落的多样性指数(H')以秋季最高,冬季最低。春季的三角棘原甲藻赤潮期间,水体中N/P值显著升高;夏季的中肋骨条藻赤潮期间,水体中N/P值显著降低。  相似文献   

19.
New sets of diatom-specific biomarkers, highly branched isoprenoids (HBIs), have been recently proposed to trace carbon flow from ice algae and pelagic phytoplankton to higher trophic level organisms. In the Antarctic, diene, a HBI of sea ice origin was more abundant in ice-associated species, while triene, a HBI of phytoplanktonic origin, was more abundant in pelagic species. However, this HBI approach has never been applied on Antarctic benthic species. Here, we analyzed diene and triene in the liver and the muscle of eight Antarctic coastal fish species (108 specimens). HBI lipids were detected in all specimens, confirming the contribution of sea ice and pelagic organic matter in coastal benthic fish species. Moreover, HBI markers were much more concentrated in the liver than in white muscle, and the relative concentrations of diene and triene strongly varied among species, as a probable result of species differences in feeding habits and trophic ecology. Seasonal variations in HBI concentrations were detected during the whole year in white muscle, but not in the liver. These findings are consistent with the well-known spring bloom in November–December, just before the annual ice break up, and the second proliferation of ice algae during the land-fast ice formation, in April–May. Therefore, investigation of HBI lipids in white muscle will likely shed new light on seasonal changes in the contribution of ice algal-derived organic matter in higher trophic level organisms.  相似文献   

20.
The relationship between sea ice and the phytoplankton springbloom over the Newfoundland and Labrador shelves is examinedusing remotely-sensed chlorophyll data and sea-ice data forthe period 1998–2004. A regression analysis between thetwo data sets shows that the retreat of sea ice precedes thespring bloom, and the inter-annual variation of the spring bloomis closely correlated with the start time of ice retreat. Thespring bloom off Canada's east coast usually starts on the easternGrand Banks. Here, the water properties are strongly influencedby sea ice on the Newfoundland shelves in early spring whenaccelerated ice melting causes the ice edge to retreat northand the melt water is advected south by the Labrador Current.After the ice retreat, the water on the eastern Grand Banksis rapidly stratified and the mixed layer shallows as a resultof surface freshening. The shallow mixed layer promotes phytoplanktongrowth. The regression analysis also reveals that an early springbloom or ice retreat tends to prolong the duration of the springbloom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号