首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antibodies were raised against intact gas vesicles of Anabaena flos-aquae, and against a synthetic peptide (GVPaNT) whose sequence is identical to the N-terminal region of the main gas vesicle protein, GVPa. A two-stage centrifugation procedure is described for separating gold-labelled antibodies bound to gas vesicles from unbound antibodies. The GVPaNT antibody bound to gas vesicles that had been previously rinsed with SDS to remove the outer gas vesicle protein, GVPc. Treatment with this antibody caused the gas vesicles to aggregate together end-to-end rather than side-by-side. The binding of the anti-GVPaNT-immunogold particles to the gas vesicle was restricted to the conical ends of the structure. These observations indicate that the sequence to which the GVPaNT antibodies were raised, residues 1 to 13 of the GVPa molecule, is exposed only at the outer surface of the cones and that it is normally obscured by GVPc. As GVPa forms both the conical ends and the cylindrical midsection of the gas vesicle, exposure of the N-terminal sequence only in the cones must be due to differences in the contact between adjacent GVPa molecules in the central cylinders and end-cones.  相似文献   

2.
In cyanobacteria the protein on the outside of the gas vesicle, GvpC, is characterised by the presence of a 33 amino acid residue repeat (33RR), which in some genera is highly conserved. The number of 33RRs correlates with the diameter of the gas vesicle and inversely with its strength. Gas vesicles isolated from Microcystis aeruginosa strain PCC 7806 were found to be wider and have a lower critical collapse pressure than those from Microcystis sp. strain BC 8401. The entire gas-vesicle gene cluster of the latter strain was sequenced and compared with the published sequence of the former: the sequences of nine of the ten gvp genes differed by only 1-5% between the two strains; the only substantial difference was in gvpC which in strain BC 8401 lacked a 99-nucleotide section encoding a 33RR. This observation further narrows the correlation of gas vesicle width to the number of 33RRs and suggests how Microcystis strains might be used in experimental manipulation of gas vesicle width and strength.  相似文献   

3.
In the filamentous cyanobacterium Calothrix PCC7601, gas-vesicle (GV) formation is restricted to specialized filaments, called hormogonia. The differentiation of these cells is controlled by environmental factors, such as light intensity and/or wavelength. The structural gene (gvpA) encoding a GV protein in this cyanobacterium has been previously cloned and sequenced. Two other genes, gvpB and gvpC have been found in the sequence downstream from gvpA. The gvpB gene corresponds to a second copy of gvpA, encoding an identical protein. Unlike the GV protein, the product of the gvpC gene is predominantly hydrophilic, as deduced from nucleotide sequence. Interestingly, the internal part of the gvpC gene is composed of four contiguous repeats, each containing 99 bp, forming highly homologous repeats in the deduced amino acid sequence. Another kind of periodicity has been detected inside the 99-bp repeats, suggesting that the gvpC gene might have evolved by amplification of a 33-bp-long primordial building block. The function of this gene remains to be elucidated. Finally, we have shown that the three genes, gvpA, gvpB, and gvpC, are organized in an operon that is exclusively expressed during GV formation in hormogonia.  相似文献   

4.
蓝藻伪空胞的特性及浮力调节机制   总被引:5,自引:0,他引:5  
张永生  孔繁翔  于洋  张民  史小丽 《生态学报》2010,30(18):5077-5090
伪空胞为蓝藻在水体中提供浮力,使其获得适宜的生长条件,最终导致蓝藻水华暴发,了解伪空胞的特征对控制蓝藻水华暴发有重要意义。文章简要回顾了蓝藻伪空胞自1865年被Klebahn发现到1965年被正式命名的研究历程,目前已发现150多种原核生物中含有伪空胞;伪空胞是两末端呈圆锥状的中空圆柱体,伪空胞半径与临界压强遵循方程:Pc=275(r/nm)-1.67MPa;伪空胞气体含量可根据不同原理,利用Walsby伪空胞测定装置、压力浊度计和细胞流式仪测得。总结了伪空胞组成的化学特性,评述了伪空胞gvp基因丛结构功能和GvpA、GvpC的蛋白空间结构。GvpA是伪空胞合成的主要成分,gvpA在伪空胞内存在多个拷贝,其功能仍不清楚;GvpC由33个氨基酸重复单位组成,重复单位越多,伪空胞越不易破裂;概述了伪空胞3种浮力调节机制:镇重物的改变、伪空胞的合成、伪空胞的破裂;归纳了环境因子(光照、温度、氮、磷、钾)参与伪空胞浮力网络调控的途径。提出了目前伪空胞研究面临的困难和问题,对伪空胞的未来研究方向提出探索性的建议。  相似文献   

5.
In earlier studies we demonstrated recombinant gas vesicles from Halobacterium sp. NRC-1, expressing a model six amino acid insert, or native vesicles displaying chemically coupled TNP, each were immunogenic, and antigenic. Long-lived responses displaying immunologic memory were elicited without exogenous adjuvant. Here we report the generation and expression of cassettes containing SIV derived DNA. The results indicate a cassette-based display/delivery system derived from recombinant halobacterial gas vesicle genes is highly feasible. Data specifically support four conclusions: (i) Recombinants carrying up to 705 bp of SIV DNA inserted into the gvpC gene form functional gas vesicles; (ii) SIV peptides contained as part of the expressed recombinant, surface exposed GvpC protein are recognized by antibody elicited in monkeys exposed to native SIV in vivo; (iii) in the absence of adjuvant, mice immunized with the recombinant gas vesicle (r-GV) preparations mount a solid, titratable antibody response to the test SIV insert that is long lived and exhibits immunologic memory; (iv) recombinant organelles, created through the generation of cassettes encoding epitopes inserted into the gvpC DNA, can be used to construct a multiepitope display (MED) library, a potentially cost effective vehicle to express and deliver peptides of SIV, HIV or other pathogens.  相似文献   

6.
7.
We have previously shown that the gas-vesicle protein GvpC is present on the outer surface of the gas vesicle, can be reversibly removed and rebound to the surface, and increases the critical collapse pressure of the gas vesicle. The GvpC molecule, which contains five partially conserved repeats of 33 amino acids (33-RR) sandwiched between 18 N-terminal and 10 C-terminal amino acids, is present in a ratio of 1:25 with the GvpA molecule, which forms the ribs of the gas vesicle. By using recombinant techniques we have now made modified versions of GvpC that contain only the first two, three or four of the 33-amino-acid repeats. All of these proteins bind to and strengthen gas vesicles that have been stripped of their native GvpC. Recombinant proteins containing three or four repeats bind in amounts that give the same ratio of 33-RR:GvpA (i.e. 1:5) as the native protein, and they restore much of the strength of the gas vesicle; the protein containing only two repeats binds at a lower ratio (1:7.7), however, and restores less of the strength. Ancestral proteins with only two, three or four of the 33-amino-acid repeats would have been functional in strengthening the gas vesicle but the progressive increase in number of repeats would have provided strength with increased efficiency.  相似文献   

8.
Gas vesicles of cyanobacteria are formed by a protein called 'gas-vesicle protein' (GVP). The complete amino acid sequence has been determined of GVP from Anabaena flos-aquae. It is 70 residues long and has an Mr of 7388. This corresponds to the size of the repeating unit cell demonstrated by X-ray crystallography of intact gas vesicles. Details of the sequence are related to the secondary beta-sheet structure of the protein and its contrasting hydrophilic and hydrophobic surfaces. Extensive amino acid sequences have also been determined for GVPs from two other cyanobacteria, species of Calothrix and Microcystis; they are highly homologous with that of Anabaena GVP. Electrophoretic analysis indicates that GVPs of different cyanobacteria form a variety of stable oligomers.  相似文献   

9.
Occurrence and distribution of gas vesicle genes among cyanobacteria.   总被引:10,自引:1,他引:9       下载免费PDF全文
Gas vesicles (GV) are specialized cell inclusions providing many aquatic procaryotes with buoyancy. In the cyanobacterium Calothrix sp. strain PCC 7601, at least four genes are involved in GV formation. One of those, gvpA1, encodes the major structural GV protein (70 amino acids) and belongs to a multigene family (gvpA1, gvpA2, gvpD). The fourth gene, gvpC, encodes a 162-amino-acid protein, the function of which is still unclear. We used the Calothrix gvpA1 and gvpC genes as probes to perform Southern hybridization experiments with DNA extracted from various cyanobacterial strains. The gvpA gene was found in all the strains that synthesize GV, indicating that its product is an obligatory component of GV. Furthermore, it was found to occur as multiple copies in most of the strains tested. The gvpC gene was only detected in some strains able to synthesize a large amount of GV within a short period. This suggests that the gvpC gene product is a dispensable protein for GV formation and is involved in the efficiency of the assembly process. Based on the occurrence of the gvp genes and on DNA-DNA hybridization patterns, genus assignments are discussed.  相似文献   

10.
11.
Synaptophysin is a major glycoprotein of Mr approximately 38,000 (in deglycosylated form: Mr approximately 34,000) characteristic of a certain class of small (30-80 nm diameter) neurosecretory vesicles, including presynaptic vesicles, but also vesicles of various neuroendocrine cells of both neuronal and epithelial phenotype. Using synaptophysin-specific antibodies we have isolated cDNA clones from rat nervous tissue libraries, which identify an approximately 2.5-kb mRNA in rat and human cells, including neuroendocrine tumours, that contains a reading frame for a polypeptide of 307 amino acids with a total mol. wt of 33 312. The deduced amino acid sequence, which was partly confirmed by comparison with sequences of two tryptic peptides obtained from purified synaptophysin, revealed four hydrophobic regions of 24 amino acids each, which are characterized, according to conformation prediction analyses, by marked alpha-helicity. The sequence shows a single potential N-glycosylation site, which is assigned to the vesicle interior, and a carboxy-terminal tail of 89 amino acids which contains glycine-rich tetrapeptide repeats, the epitope of monoclonal antibody SY38, and a number of collagenase-sensitive sites accessible on the surface of the intact vesicles. These features suggest that the polypeptide spans the vesicle membrane four times, with both N and C termini located on the outer, i.e. cytoplasmic, surface of the vesicles.  相似文献   

12.
A series of deletions introduced into the gvp gene cluster of Haloferax mediterranei, comprising 14 genes involved in gas vesicle synthesis (mc-vac-region), was investigated by transformation experiments. Gas vesicle production and the expression of the gvpA gene encoding the major gas vesicle protein, GvpA, was monitored in each Haloferax volcanii transformant. Whereas transformants containing the entire mc-vac-region produced gas vesicles (Vac+), various deletions in the region 5' to gvpA (encompassing gvpD-gvpM) or 3' to gvpA (containing gvpC, gvpN and gvpO) revealed Vac- transformants. All these transformants expressed gvpA and contained the 8 kDa GvpA protein as shown by Western analysis. However, transformants containing the gvpA gene by itself indicated a lower level of GvpA than observed with each of the other transformants. None of these transformants containing deletion constructs assembled the GvpA protein into gas vesicles. In contrast, transformants containing a construct carrying a 918 bp deletion internal to gvpD exhibited a tremendous gas vesicle overproduction, suggesting a regulatory role for the gvpD gene or its product. This is the first assignment of a functional role for one of the 13 halobacterial gvp genes found in addition to gvpA that are involved in the synthesis of this unique structure.  相似文献   

13.
14.
15.
The gas vesicle of the planktonic cyanobacterium Anabaena flos-aquae is a cylindrical shell made of protein enclosing a gas-filled space. Protein sequence analysis shows that the vesicle is made from a single protein. By gel electrophoresis and amino acid analysis its molecular weight was estimated to be 20 600. Taken with previously obtained X-ray data, a simple interpretation of its molecular structure is of the polypeptide snaking in six pairs of antiparallel chains, three in each layer. The molecule would repeat along the ribs of the vesicle at intervals of 3.4 nm.  相似文献   

16.
The dominance of gas-vacuolate cyanobacteria is often attributedto their buoyancy and to their ability to regulate buoyancyin response to environmental conditions. Changes in absolutegas vesicles volume, carbohydrate content, protein content andcolony buoyancy of Microcystis flos-aquae were investigatedduring nitrogen-limited, phosphorus-limited and nutrient-repletegrowth. When nutrient-replete, M. flos-aquae cells consistentlyhad excess gas vesicles, which provided sufficient buoyancythat the influence of daily carbohydrate changes on cells uponfloatation was negligible. However, during nitrogen-limitedgrowth, gas vesicle volume per cell decreased significantlywith nitrogen exhaustion. The maximum decrease of gas vesiclevolume was up to 84–88%. At the same time, cellular carbohydratecontent had an accumulation trend. The decrease of gas vesiclebuoyancy together with the daily increase in carbohydrate aresuggested to explain the daily changes in the cell floatation.During phosphorus-limited growth, gas vesicle volume per celldecreased slightly (maximum to 22–32%), and they stillprovided sufficient buoyancy that most cells kept floating eventhough there were significant daily carbohydrate changes. Sincenitrogen limitation caused more significant buoyancy loss thanphosphorus limitation did, surface water blooms may disappearor appear frequently in nitrogen limited water bodies whilethey may persist a longer time in phosphorus limited water bodies.The quantitative analysis in buoyancy change by gas vesicles,carbohydrate and protein suggested that long-term buoyancy regulationwas mainly determined by changes of gas vesicle volume whereasshort-term buoyancy regulation was mainly determined by carbohydrateaccumulation and consumption. Both long-term and short-termbuoyancy regulation were influenced by cell nutrient status.Furthermore, gas vesicle volume per cell and protein contentchanged in the same way in both nitrogen-limited and phosphorus-limitedgrowth, which implied that the decrease of gas vesicles wereassociated with controls of total protein synthesis.  相似文献   

17.
Transformation experiments with Haloferax volcanii show that the amino acid sequence of the gas vesicle protein GvpA influences the morphology and strength of gas vesicles produced by halophilic archaea. A modified expression vector containing p-gvpA was used to complement a Vac(-) strain of Hfx. volcanii that harboured the entire p-vac region (from Halobacterium salinarum PHH1) except for p-gvpA. Replacement of p-gvpA with mc-gvpA (from Haloferax mediterranei) led to the synthesis of gas vesicles that were narrower and stronger. Other gene replacements (using c-gvpA from Hbt. salinarum or mutated p-gvpA sequences) led to a significant but smaller increase in gas vesicle strength, and less marked effects on gas vesicle morphology.  相似文献   

18.
The Escherichia coli dnaJ gene product is required for bacteriophage lambda DNA replication at all temperatures. It is also essential for bacterial viability in at least some conditions, since mutations in it result in temperature-sensitive bacterial growth. We have previously cloned the dnaJ gene and shown that its product migrates as a Mr 37,000 polypeptide under denaturing conditions. Here we present the primary DNA sequence of the dnaJ gene. It codes for a processed basic protein (63 basic and 51 acidic amino acids) composed of 375 amino acids totaling Mr 40,973. The predicted NH2-terminal amino acid sequence, overall amino acid composition, and isoelectric point agree well with those of the purified protein. We present evidence that the rate of expression of the dnaJ protein is increased by heat shock under the control of the htpR (rpoH) gene product.  相似文献   

19.
In addition to GvpA, the main structural protein, an SDS-soluble protein has been found in gas vesicles isolated from six different genera of cyanobacteria. N-terminal sequence analysis of the first 30 to 60 residues of the gel-purified proteins showed that they were homologous to GvpC, a protein that strengthens the gas vesicle in Anabaena flos-aquae. The proteins from some of the organisms showed rather low homology, however, and this may explain why the genes that encode them have not been found by Southern hybridization studies. The gas vesicles of another cyanobacterium, Dactylococcopsis salina, contained two SDS-soluble proteins (M(r) 17,000 and 35,000) that were identical in sequence for the first 24 residues but not thereafter; these two proteins showed no clear homology to GvpC. The sequence of GvpA, the main structural gas vesicle protein, was very similar in each of the organisms investigated. GvpA from the purple bacterium Amoebobacter pendens was different for the first 8 residues but 51 of the next 56 residues were identical to those of the cyanobacterial GvpA. Analysis of the GvpA and GvpC sequences provides support for the idea that the low diversity of GvpA reflects a high degree of conservation rather than a recent origin followed by lateral gene transfer between different bacteria.  相似文献   

20.
Xanthomonas sp. secretes an extracellular protein (Mr approximately 70+/-5 kDa) during growth on purified natural rubber [poly(1,4-cis-isoprene)] but not during growth on water-soluble carbon sources such as glucose or gluconate. A 1.3 kbp DNA fragment coding for an internal part of the structural gene of the 70 kDa protein was amplified by nested polymerase chain reaction (PCR) using amino acid sequence information obtained after Edman degradation of selected trypsin-generated peptides of the purified 70 kDa protein. The PCR product was used as a DNA probe to clone the complete structural gene from genomic DNA of Xanthomonas sp. The sequenced DNA contained a 2037 bp open reading frame which coded for a polypeptide of 678 amino acids (Mr 74.6 kDa) and which included the features of the N-terminal signal peptidase cleavage site (Mr approximately 72.9 kDa for the mature protein). Analysis of the amino acid sequence revealed the presence of two heme binding motifs (CXXCH) and a approximately 20 amino acids long sequence that is conserved in the Paracoccus denitrificans and Pseudomonas aeruginosa diheme cytochrome c peroxidases (CCPs). This region includes a histidine residue (H519 in Xanthomonas sp. and H265 and H271 in the Pseudomonas strains, respectively) that is essential for activity in CCPs and that is also conserved in other bacterial oxidases. Blast analysis confirmed the relatedness of the 70 kDa protein to heme-containing oxidases and suggested that it is a member of a new family of relatively large (approximately 500 to approximately 1000 amino acids) extracellular proteins with so far unknown function being only far related in amino acid sequence to P. denitrificans and P. aeruginosa CCPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号