首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Two diastereoisomers of 4-carboxy-4-hydroxy-2-aminoadipic acid have been isolated from leaves and inflorescences of Caylusea abyssinica. Green parts of the plant also contain appreciable amounts of the two diastereoisomers of 4-hydroxy-4-methylglutamic acid, 3-(3-carboxyphenyl)alanine, (3-carboxyphenyl)glycine, 3-(3-carboxy-4-hydroxyphenyl)alanine, (3-carboxy-4-hydroxyphenyl)glycine and in low concentration 2-aminoadipic acid, saccharopine [(2S, 2′S)-N6-(2-glutaryl)lysine] and some γ-glutamyl peptides. The acidic amino acids were separated from other amino acids on an Ecteola ion exchange column with M pyridine as eluant.  相似文献   

2.
3-(3-Carboxyphenyl)alanine, (3-carboxyphenyl)glycine, 3-(3-carboxy-4-hydroxyphenyl)alanine and (3-carboxy-4-hydroxyphenyl)glycine occur in all parts of Reseda luteola. The concentrations of the two diastereoisomers of 2(S)-4-hydroxy-4-methylglutamic acid undergo seasonal variation, the highest concentrations occurring in the first part of the summer. Highest concentrations are found in the inflorescences. The two diastereoisomers of 2(S)-4-hydroxy-2-aminopimelic acid occur in appreciable amounts in all parts of the plant. They are easily transformed into two structurally different lactones, one of which is very unstable. The structures of these amino acids have been confirmed by synthesis. Green parts of R. luteola also contain substantial quantities of γ-glutamylglutamic acid and glutathione.  相似文献   

3.
Two sulfur-containing compounds, (S)-2-amino-5-((R)-1-carboxy-2-((E)-3-(4-hydroxy-3-methoxyphenyl)allylthio)ethyl-amino)-5-oxopentanoic acid (1) and (S)-2-amino-5-((R)-1-(carboxymethylamino)-3-((E)-3-(4-hydroxyphenyl)allylthio)-1-oxopropan-2-ylamino)-5-oxopentanoic acid (2), and one 1H-pyrrole-2-carboxylic acid derivative, 6-(3-(1H-pyrrole-2-carbonyloxy)-2-hydroxypropoxy)-3,4,5-trihydroxy-tetrahydro-2H-pyran-2-carboxylic acid (3), together with eighteen known phenolic compounds, were isolated from the fruits of pineapple. Their structures were elucidated by a combination of spectroscopic analyses. Some of these compounds showed inhibitory activities against tyrosinase. The half maximal inhibitory concentration values of compounds 1, 4, 5, 6, 7 are lower than 1 mM. These compounds may contribute to the well-known anti-browning effect of pineapple juice and be potential skin whitening agents in cosmetic applications.  相似文献   

4.
Summary S-[2-Carboxy-1-(1H-imidazol-4-yl)ethyl]-3-mercaptopyruvic acid (I) was chemically synthesized in 15% yield by incubating a reaction mixture oftrans-urocanic acid and 3-fold excess of 3-mercaptopyruvic acid at 45°C for 6 days. The synthesized compound was characterized by fast-atom-bombardment mass spectrometry and high-voltage paper electrophoresis. CompoundI was identified with a product of an enzymatic reaction ofS-[2-carboxy-1-(1H-imidazol-4-yl)ethyl]-l-cysteine (II) with rat liver homogenate in a phosphate buffer, pH 7.4. CompoundI was degraded toS-[2-carboxy-1-(1H-imidazol-4-yl)ethyl]-3-mercaptolactic acid (III), a compound previously found in human urine [Kinuta et al. (1994) Biochem J 297: 475–478], by incubation with rat liver homogenate. From these results, we suggest that compoundI is a metabolic intermediate for the formation of compoundIII from compoundII. The present pathway follows a formation of compoundII fromS-[2-carboxy-1-(1H-imidazol-4-yl)ethyl] gluthathione [Kinuta et al. (1993) Biochim Biophys Acta 1157: 192–198], a proposed metabolite ofl-histidine.  相似文献   

5.
Extensive screening for the antiproliferative activity of different compounds found in trees was performed by extracting the leaves of Aphananthe aspera (Thunb.) Planch and then using chromatographic separation to afford 2 new compounds, (2S,4R)-2-carboxy-4-(E)-p-caffeoyl-1-methyl-hydroxyproline (1) and 5-O-caffeoyl quinic acid-(7′R,8′S,7′′E)-3′,4′,3′′-dihydroxy-4′′,7′-epoxy-8′,5′′-neolign-7′-ene-9- carboxyl (2). In addition, 6 known compounds were discovered from the leaves of this plant. The structural determination of all compounds, including their absolute configurations, was established by UV, IR, HRESIMS, 1D and 2D NMR, and CD spectroscopy. The novel compound 1 showed strong antiproliferative activity against human breast adenocarcinoma cells MCF-7 and MDA-MB-231.  相似文献   

6.
A transfer of the γ-glutamyl moiety of S-[2-carboxy-1-(1H-imidazol-4-yl)ethyl]glutathione (I), an adduct of glutathione and l-histidine metabolite urocanic acid, has been investigated by using γ-glutamyltransferase preparation from bovine kidney. When an equimolar mixture of two diastereomers of compound I in a phosphate buffer was allowed to react with glycylglycine in the presence of the transferase, two diastereomers of N-{S-[2-carboxy-1-(1H-imidazol-4-yl)ethyl]-l-cysteinyl}glycine (II) were formed in the same yield with each other and this was accompanied by a formation of γ-glutamylglycylglycine. Kinetics of compound I with the transferase indicated high affinity between the two materials, while the maximal reaction velocity of the γ-glutamyl transfer was low. Effects of compound I in vitro on the transfer of γ-glutamyl moiety of γ-glutamyl-p-nitroanilide to glycylglycine with the transferase were also studied, and the results indicated that the transfer was suppressed by compound I based on its competitive and non-competitive inhibitions. These results suggest that little variation in reactivities of two diastereomers of compound I as the substrate is given by the difference in stereomerism of their asymmetric carbon atoms and that inhibitory effects of compound I on the catalytic action of the transferase is of sufficient physiological importance to decrease the degradation of natural γ-glutamyl compounds, such as glutathione and its analogs.  相似文献   

7.
Fractionation of dichloromethane extracts from the leaves of Piper heterophyllum and P. aduncum afforded three prenylated hydroxybenzoic acids, 3-[(2E,6E,10E)-11-carboxy-3,7,15-trimethyl-2,6,10,14-hexadecatetraenyl)-4,5-dihydroxybenzoic acid, 3-[(2E,6E,10E)-11-carboxy-13-hydroxy-3,7,15-trimethyl-2,6,10,14-hexadecatetraenyl]-4,5-dihydroxybenzoic acid and 3-[(2E,6E,10E)-11-carboxy-14-hydroxy-3,7,15-trimethyl-2,6,10,15-hexadecatetraenyl]-4,5-dihydroxybenzoic acid, along with the known compounds, 4,5-dihydroxy-3-(E,E,E-11-formyl-3,7,15-trimethyl-hexadeca-2,6,10,14-tetraenyl)benzoic acid (arieianal), 3,4-dihydroxy-5-(E,E,E-3,7,11,15-tetramethyl-hexadeca-2,6,10,14-tetraenyl)benzoic acid, 4-hydroxy-3-(E,E,E-3,7,11,15-tetramethyl-hexadeca-2,6,10,14-tetraenyl)benzoic acid, 3-(3,7-dimethyl-2,6-octadienyl)-4-methoxy-benzoic acid, 4-hydroxy-3-(3,7-dimethyl-2,6-octadienyl)benzoic acid and 4-hydroxy-3-(3-methyl-1-oxo-2-butenyl)-5-(3-methyl-2-butenyl)benzoic acid. Their structures were elucidated on the basis of spectroscopic data, including homo- and heteronuclear correlation NMR experiments (COSY, HSQC and HMBC) and comparison with data reported in the literature. Riguera ester reactions and optical rotation measurements established the compounds as racemates. The antiparasitic activity of the compounds were tested against three strains of Leishmania spp., Trypanosoma cruzi and Plasmodium falciparum. The results showed that 3-(3,7-dimethyl-2,6-octadienyl)-4-methoxy-benzoic acid exhibited potent and selective activity against L. braziliensis (IC50 6.5 μg/ml), higher that pentamidine used as control. Moreover, 3-[(2E,6E,10E)-11-carboxy-3,7,15-trimethyl- 2,6,10,14-hexadecatetraenyl)-4,5-dihydroxybenzoic acid and 4-hydroxy-3-(3-methyl-1-oxo-2-butenyl)-5-(3-methyl-2-butenyl)benzoic acid showed moderate antiplasmodial (IC50 3.2 μg/ml) and trypanocidal (16.5 μg/ml) activities, respectively.  相似文献   

8.
The fruit of Averrhoa carambola, commonly known as star fruit or carambola, is popular in Southeast Asia and China. Two new tetrahydroisoquinoline alkaloids, (1R*,3S*)-1-(5-hydroxymethylfuran-2-yl)-3-carboxy-6-hydroxy-8-methoxyl-1,2,3,4-tetrahydroisoquinoline (1) and (1S*,3S*)-1-methyl-3-carboxy-6-hydroxy-8-methyoxyl-1,2,3,4-tetrahydroisoquinoline (2), were isolated from the fruit, along with vanillic acid (3), ferulic acid (4), 8,9,10-trihydroxythymol (5), and arjunolic acid (6). Their structures were elucidated by spectroscopic method. Compounds 1, 2, and 5 showed weak ferric reducing antioxidant potency (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity.  相似文献   

9.
A new natural product, 2(S),3(S)-3-hydroxy-4-methyleneglutamic acid (G3) has been isolated from seeds of Gleditsia caspica. The structure has been established by chemical and spectroscopic methods. Catalytic reduction of G3 yields 2(S),4(S)-4-methylglutamic acid and a new amino acid, 2(S),3(S),4(S)-3-hydroxy-4-methylglutamic acid. Ozonolysis of G3 followed by oxidation gives 2(S),3(R)-3-hydroxyaspartic acid. The S- (or l-) configurations at C2 in G3 and in 2(S),3(S),4(S)-3-hydroxy-4-methyglutamic acid and the S-configurations at C3 for G3 and 2(S),3(S),4(S)-3-hydroxy-4-methylglutamic acid and at C4 for 2(S),3(S),4(S)-3-hydroxy-4-methylglutamic acid are inferred from the configurations at C2 in 2(S),4(S)-4-methylglutamic acid and at C2 and C3 in 2(S),3(R)-3-hydroxyaspartic acid. The seeds also contain appreciable quantities of 2(S),3(S),4(R)-3-hydroxy-4-methylglutami c acid (G1) and 2(S),4(R)-4-methylglutamic acid.  相似文献   

10.
Previously we investigated the use of DTPA-coupled proteins to simplify labeling with 99mTc but especially to improve the stability of the label. These investigations have now been extended to include several N2S2 ligands such as N,N′-bis(2-methyl-2-mercaptopropyl)ethylenediamine (DADT) and a novel ligand of similar structure with a propylene bridge between two amines, 2-hydroxy-N,N′-bis(2-methyl-2-mercaptopropyl)propylenediamine (DADT-3C-2OH). The condition of labeling of free ligand (pH, buffer and tin concentration) was optimized to provide 100% chelation with 99mTc at reasonable ligand concentrations (100 μg/mL or less). Labeling was determined by paper chromatography, reverse-phase and size-exclusion HPLC. After incubation in fresh serum, 37 °C for 24 h, repeat analysis showed less than 5% dissociation of the chelate. By contrast, the DTPA chelate shows instability towards oxidation during this period. DADT derivatized on an ethylene carbon showed almost identical serum stability as DADT itself whereas when derivatized on a nitrogen greater instabilities were apparent. Using identical labeling conditions, free DADT was chelated in the presence of IgG at different ligand: protein molar ratios. Non-specific binding of 99mTc to IgG at a 10:1 DADT-HM:IgG molar ratio was as little as 5% and was essentially zero at a 2:1 DADT:IgG molar ratio when labeling was by transcomplexation from 99mTc-EDTA. The DADT-3C-2OH ligand showed superior performance both in regard to serum stability and the absence of non-specific binding. In conclusion, the N2S2 ligands form more stable chelates with 99mTc than does DTPA with reduced non-specific binding and may therefore represent an attractive alternative for labeling proteins with 99mTc by the bifunctional chelate approach.  相似文献   

11.
A new naturally occurring pipecolic acid derivative has been isolated from leaves of the legume Calliandra haematocephala. Its structure was shown to be 2S,4R-carboxy-2-acetylamino-4-piperidine by chemical and spectrosopic methods.  相似文献   

12.
14C-labelled shikimic acid and double labelled shikimic acid tritiated stereospecifically at C-6 are incorporated into 3-(3-carboxyphenyl)alanine, 3-(3-carboxyl-4-hydroxyphenyl)alanine, phenylalanine, and tyrosine in Resda lutea L., Reseda odoratta L., Iris x Hollandica cv. Prof. Blauw, and Iris x hollandica cv. Wedgwood. The experiments with 14C-labelled shikimic acid confirm that the aromatic carboxyl groups and rings in 3-(3-carboxyphenyl)-alanine and 3-(3-carboxy-4-hydroxyphenyl)alanine derive from the carboxyl group and ring in shikimic acid whereas the experiments with double labelled shikimic acid demonstrate that the pro-6S-hydrogen atom is retained and the pro-6R-hydrogen atom lost in the biosynthesis of 3-(3-carboxyphenyl)alanine, phenylalanine, and tyrosine in the plants used. 3H was located in the ortho-position in the aromatic rings of phenylalanine and tyrosine but in a position para to the alanine side chain of 3-(3-cabroxyphenyl)alanine. No 3H was found in 3-(3-carboxy-4-hydroxyphenyl)alanine. This supports a derivation of the last two compounds from chorismic acidvia isochorismic acid, isoprephenic acid, and 3′-carboxyphenylpyruvic acid and 3′-carboxy-4′-hydroxyphenylpyruvic acid. The 3H/14 C ratio in 3-(3-carboxyphenyl)alanine was found higher than in the precursor used. This isotope effect must operate by competition between the pathways from isoprephenic acid to 3′-carboxyphenylpyruvic acid and to 3′-carboxy-4′-hydroxyphenylpyruvic acid. The proposed biosynthetic pathways for the two carboxy-substituted amino acids are in agreement with their distribution patterns in the plant kingdom and suggest that they may derive from minor changes of enzymes involved in the general pathways of aromatic biosynthesis.  相似文献   

13.
The chemical investigation of the Vietnamese lichen Ramalina farinacea (L.) Ach. led to the isolation and the structure elucidation of eight compounds (1–8), including one new depside, formulated as methyl homosekikate (1) and two new diphenyl ethers, 3-(2-carboxy-5-methoxy-3-propylphenoxy)-2-hydroxy-4-methoxy-6-propylbenzoic acid, namely ramalinic acid A (2), and 3-(2-carboxy-5-methoxy-3-propylphenoxy)-2-hydroxy-4-methoxy-6-pentylbenzoic acid, namely ramalinic acid B (3). Their chemical structures were unambiguously determined by analysis of 1D and 2D NMR and high resolution ESI mass spectroscopic data, as well as by comparison with literature data. We also proposed a possible biosynthetic route for the formation of the two new diphenyl ethers (2) and (3) via an enzymatically induced intramolecular Smiles rearrangement of the depsides sekikaic acid and homosekikaic acid, respectively.  相似文献   

14.
Two new ligand systems for complexation with 99mTc were prepared. The two analogs of bisaminoethanethiol (BAT): N,N′-bis(2-methyl-2-mercaptopropyl)-2,2-dimethylpropylenediamine (PAT-HM) and N,N′-bis[2-(2-ethyl-1-mercaptopropyl)] ethylenediamine (TMR), form neutral and lipid soluble complexes with 99mTc that readily penetrate the blood-brain barrier following i.v. injection into rats. Although the 99mTc chelates do not display the prolonged brain retention required for use in single photon emission computed tomographic imaging studies, the fact that each ligand forms a neutral and lipid-soluble complex of high chemical stability when coordinated with 99mTc warrants further investigation to increase the site- and organ-specificity of these agents.  相似文献   

15.
The oxidative catabolism of uric acid produces 5-hydroxyisourate (HIU), which is further degraded to (S)-allantoin by two enzymes, HIU hydrolase and 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase. The intermediates of the latter two reactions, HIU and 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline, are unstable in solution and decay nonstereospecifically to allantoin. In addition, nonenzymatic racemization of allantoin has been shown to occur at physiological pH. Since the further breakdown of allantoin is catalyzed by allantoinase, an enzyme that is specific for (S)-allantoin, an allantoin racemase is necessary for complete and efficient catabolism of uric acid. In this work, we characterize the structure and activity of allantoin racemase from Klebsiella pneumoniae (KpHpxA). In addition to an unliganded structure solved using selenomethionyl single-wavelength anomalous dispersion, structures of C79S/C184S KpHpxA in complex with allantoin and with 5-acetylhydantoin are presented. These structures reveal several important features of the active site including an oxyanion hole and a polar binding pocket that interacts with the ureido tail of allantoin and serves to control the orientation of the hydantoin ring. The ability of KpHpxA to interconvert the (R)- and (S)-enantiomers of allantoin is demonstrated, and analysis of the steady-state kinetics of KpHpxA yielded a kcat/Km of 6.0 × 105 M− 1 s− 1. Mutation of either of the active-site cysteines, Cys79 or Cys184, to serine inactivates this enzyme. The data presented provide new insights into the activity and substrate specificity of this enzyme and enable us to propose a mechanism for catalysis that is consistent with the two-base mechanism observed in other members of the aspartate/glutamate family.  相似文献   

16.
To investigate the labeling of small molecules with 99mTc by the bifunctional chelate approach, we have synthesized both a fatty acid and an estrone derivative containing a chelator of the N2S2 type. In the case of the fatty acid, this was a diaminodithiol (DADT) while for the estrone, a diaminodisulfide (DADS) was attached. The estrone derivative (5-(2-methylene estrone 3-methyl ether)-3,3,10,10-tetramethyl-1, 2-dithia-5,8-diazacyclodecane hydrochloride, DADS-E) was prepared by alkylation of DADS while the fatty acid derivative (N-(11-undecanoic acid)-N,N′-bis(2-methyl-2-mercaptopropyl) ethylenediamine hydrochloride, DADT-FA) was synthesized by alkylation of DADS followed by reduction. DADS-E was labeled in ethanol at elevated temperatures while DADT-FA was labeled at room temperature, both by stannous reduction. Paper chromatography showed both to be labeled and reverse-phase HPLC showed multiple peaks for both. Serum stability studies were performed by incubation at 37 °C with aliquots removed at 1 min and 1 day for analysis by size-exclusion HPLC. Initially, little pertechnetate or binding to serum proteins was observed whereas after 1 day the majority of activity in both cases was protein bound with 20 and 38% pertechnetate appearing for DADT-FA and DADS-E respectively. In conclusion, small biologically active molecules may be labeled with 99mTc through an attached diaminodithiol or diaminodisulfide group.  相似文献   

17.
Two new ent-kaurene diterpenoids, 13α,15α-dihydroxy-18-carboxy-19-nor-ent-kaur-16-ene-2β-O-(2′-angelate)-β-d-glucopyranoside (leontocin A, 1), 13α,15α-dihydroxy-18-carboxy-19-nor-ent-kaur-16-ene-2β-O-(2′-angelate-6′-acetyl)-β-d-glucopyranoside (leontocin B, 2), and one new lignan, 2,3-bis[(3,4-di-hydroxyphenyl)methylene]-monoethyl ester-butanedioic acid (leontolignan A, 3), together with three known phenolic acids (4-6) were isolated from the aerial parts of Leontopodium leontopodioides (Asteraceae). Their structures were elucidated by chemical and spectroscopic methods. All isolates were evaluated for their anti-inflammatory activities by measuring their inhibitory effects against cyclooxygenase-1 and 2 in vitro.  相似文献   

18.
The reaction of sodium D-glucuronate with a synthetic peptide, AcTyrLysGlyNH2 acetate, under physiological conditions, gave as major product the sodium salt of AcTyr-N-(D-arabino-5-carboxy-2,3,4,5-tetrahydroxy-1-pentenyl)-N-(D-arabino- 5-carboxy-3,4,5-trihydroxy-2-oxopentylidene)LysGlyNH2 (2). The structure was elucidated on the basis of p.m.r., 13C-n.m.r., i.r., and u.v. spectra, and pH titration. Compound 2 is the product of oxidation of the sodium salt of AcTyr-N,N-bis(D- arabino-5-carboxy-2,3,4,5-tetrahydroxy-1-pentenyl)LysGlyNH2, the bis-enol form of the di-D-fructuronic acid peptide obtained through the Amadori rearrangement. A new type of condensation that gives a product having a conjugated enol-keto-immonium group might take place when D-glucuronic acid reacts with peptides or proteins containing a lysine residue.  相似文献   

19.
The trunk wood of an Amazonian Aniba species contains three novel neolignans: (2R, 3R, 3aS, 5R)-3a-allyl-5-methoxy-2-(3,4,5-trimethoxyphenyl)-3-methyl-2,3,3a,4,5,6-hexahydro-6-oxobenzofuran (canellin-D), (2R,3R,3aS,5R)-3a-allyl-5,7-dimethoxy-2-(3-methoxy-4,5-methylenedioxyphenyl)-3-methyl-2,3,3a,4,5,6-hexahydro-6-oxobenzofuran (canellin-E) and (2S,3S,3aS,5R)-3a-allyl-5-methoxy-2-(3-methoxy-4,5-methylenedioxyphenyl)-3-methyl-2,3,3a,4,5,6-hexahydro-6-oxobenzofuran (armenin-C). The absolute stereochemistries of these and of all other known hexahydro-6-oxobenzofurans were determined by CD comparisons with model compounds.  相似文献   

20.
The new lignan derivative, erimopyrone, was isolated from the liverwort, Moerckia erimona. Its structure was established as [1R, 2S]-1(6-carboxy-2-oxo-2H-4-pyranyl)- 6,7-dihydroxy-1,2-dihydro-2,3-naphthalenedicarboxylic acid by spectroscopic methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号