首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Bioprocess and Biosystems Engineering - A glycosidase of the basidiomycete Bjerkandera adusta (BadGluc) was found in screenings to possess a strong decolorizing ability towards...  相似文献   

2.
A new strain of Bacillus sp. was isolated from a hot water spring in India. This strain generated a high activity of extracellular beta-galactosidase at 37 degrees C in shake flasks. The beta-galactosidase activity was found to increase continuously but the production rate was slower than with some other organisms reported in the literature. There were noteworthy differences in the time-domain profiles of bacterial concentration and beta-galactosidase activity when the starting concentration of substrate (glucose) was tripled from 10 g/L. These differences may be explained in terms of the relative rates of enzyme synthesis and its diffusion across the cell wall. The enzyme produced by this organism is more stable than other beta-galactosidases; its half-life is 408 h at 50 degrees C and 94 h at 55 degrees C, while the reported enzymes showed perceptible loss of activity within 2 h.  相似文献   

3.
-Glucosidase and -xylosidase production by a yeastlike Aureobasidium sp. was carried out during solid-state and submerged fermentation using different carbon sources and crude enzymes were characterized. -Glucosidase and -xylosidase exhibited optimum activities at pH 2.0–2.5 and 3.0, respectively. These enzymes had the maximum activities at 65°C and were stable in a wide pH range and at high temperatures.  相似文献   

4.
We previously reported on a new yeast strain of Clavispora sp. NRRL Y-50464 that is capable of utilizing cellobiose as sole source of carbon and energy by producing sufficient native β-glucosidase enzyme activity without further enzyme supplementation for cellulosic ethanol production using simultaneous saccharification and fermentation. Eliminating the addition of external β-glucosidase reduces the cost of cellulosic ethanol production. In this study, we present results on the isolation and identification of a β-glucosidase protein from strain Y-50464. Using Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and blast search of the NCBInr database (National Center for Biotechnology Information nonredundant), the protein from Y-50464 was identified as a β-glucosidase (BGL1) with a molecular weight of 93.3 kDa. The BGL1 protein was purified through multiple chromatographic steps to a 26-fold purity (K m?=?0.355 mM [pNPG]; K i?=?15.2 mM [glucose]), which has a specific activity of 18.4 U/mg of protein with an optimal performance temperature at 45 °C and pH of 6.0. This protein appears to be intracellular although other forms of the enzyme may exist. The fast growth rate of Y-50464 and its capability to produce sufficient β-glucosidase activity for ethanol conversion from cellobiose provide a promising means for low-cost cellulosic ethanol production through a consolidated bioprocessing development.  相似文献   

5.
Applied Microbiology and Biotechnology - MeBglD2, a β-glycosidase that is highly activated in the presence of various monosaccharides and disaccharides, was isolated from a soil metagenomic...  相似文献   

6.
Summary An extremely thermophilic aerobic bacterium which produced -glucosidase was isolated from soil collected at the Yudanaka hot spring in Japan. It was identified as belonging to the genus Thermus. Production of -glucosidase by this bacterium was stimulated by the addition of cellobiose or laminaribiose to the medium. The optimum pH and temperature of the enzyme were 4.5–6.5 and 85° C respectively. The enzyme was stable in the pH range of 4.5–7.0 at 70° C for 2 h and the half-life at 75° C was 5 days. The K m value of the enzyme for p-nitrophenyl--d-glucopyranoside, determined at 70° C in 0.1 M sodium phosphate buffer (pH 6.5), was 0.28 mM while the K m was 2.0 mM for cellobiose. The enzyme effectively hydrolysed cellobiose at 70° C and the conversion yields of cellobiose to glucose were 95%, 93% and 90% at substrate concentrations of 5%, 10% and 15%, respectively.  相似文献   

7.
A new species of Megischus Brullé from China, Megischus aplicatussp. n.,is described and illustrated. A key to the Chinese species of Megischus is added. The holotype is deposited in the Parasitic Hymenoptera Collection of Zhejiang University, Hangzhou.  相似文献   

8.
We purified an extracellular thermostable -galactosidase of Saccharopolyspora rectivirgula strain V2-2, a thermophilic actinomycete, to homogeneity and characterized it to be a monomeric enzyme with a relative molecular mass of 145 000 and s°20,w of 7.1 s. In addition to the hydrolytic activity of 1-O-substituted -d-galactopyranosides such as lactose [a Michaelis constant K m=0.75 mm and molecular activity (k cat)= 63.1 s–1 at pH 7.2 and 55° C] and p-nitrophenyl -d-galactopyranoside (K m=0.04 mm k cat= 55.8 s–1), the enzyme had a high transgalactosylation activity. The enzyme reacted with 1.75 m lactose at 70°C and pH 7.0 for 22 h to yield oligosaccharides in a maximum yield (other than lactose) of 41% (w/w). A general structure for the major transgalactosylic products could be expressed as (Gal)c-Glc, where n is 1, 2, 3, and 4 with a glucose at a reducing terminal. These oligosaccharides could selectively promote the growth of the genus Bifidobacterium found in human intestines. S. rectivirgula -galactosidase was stable at pH 7.2 up to 60°C (for 4 h in the presence of 10 m MnCl2) or 70°C (for 22 h in the presence of 1.75 m lactose and 10 m MnCl2). Thus the enzyme is applicable to an immobilized enzyme system at high temperatures (60°C <) for efficient production of the oligosaccharides from lactose. Correspondence to: T. Nakayama  相似文献   

9.
《Process Biochemistry》2014,49(5):758-767
Fructooligosaccharides (FOS) are prebiotics that selectively stimulate the growth and activity of lactobacilli and bifidobacteria. These strains metabolize FOS with endogenous β-fructofuranosidase. In this study, a β-fructofuranosidase gene from Lactobacillus plantarum ST-III designated sacA was cloned into Escherichia coli, and the properties of the recombinant protein (SacA) were examined. The sacA gene encodes a peptide of 501 amino acids with a predicted molecular weight of 56.7 kDa. Sequence alignment revealed the presence of three highly conserved motifs, NDPNG, RDP and EC, indicating that the enzyme belongs to glycoside hydrolase family 32. The predicted three-dimensional structure of the SacA enzyme was similar to β-fructofuranosidases of bifidobacteria, such that it contained a five-blade β-propeller module and a β-sandwich domain with one additional N-terminal α-helix. The optimal reaction temperature and pH of the enzyme were 37 °C and 6.0, respectively. Substrate hydrolysis and kinetic parameters demonstrated that β-fructofuranosidase from L. plantarum ST-III liberated fructosyl residues from the non-reducing terminus of fructans, such as sucrose, FOS, levan or inulin, and FOS was the preferred substrate. The expression of the sacA gene in a non-FOS-fermenting strain, Lactobacillus rhamnosus GG, enabled the recombinant strain to metabolize FOS and sucrose.  相似文献   

10.
Li X  Pei J  Wu G  Shao W 《Biotechnology letters》2005,27(18):1369-1373
For the first time, a β-glucosidase gene from the edible straw mushroom, Volvariella volvacea V1-1, has been over-expressed in E. coli. The gene product was purified by chromatography showing a single band on SDS-PAGE. The recombinant enzyme had a molecular mass of 380 kDa with subunits of 97 kDa. The maximum activity was at pH 6.4 and 50 °C over a 5 min assay. The purified enzyme was stable from pH 5.6–8.0, had a half life of 1 h at 45 °C. The β-glucosidase had a Km of 0.2 mM for p-nitrophenyl-β-D-glucopyranoside.  相似文献   

11.
12.
A Streptococcus mitis genomic DNA fragment carrying the SMT1224 gene encoding a putative β-galactosidase was identified, cloned, and expressed in Escherichia coli. This gene encodes a protein 2,411 amino acids long with a predicted molecular mass of 268 kDa. The deduced protein contains an N-terminal signal peptide and a C-terminal choline-binding domain consisting of five consensus repeats, which facilitates the anchoring of the secreted enzyme to the cell wall. The choline-binding capacity of the protein facilitates its purification using DEAE-cellulose affinity chromatography, although its complete purification was achieved by constructing a His-tagged fusion protein. The recombinant protein was characterized as a monomeric β-galactosidase showing a specific activity of around 2,500 U/mg of protein, with optimum temperature and pH ranges of 30 to 40°C and 6.0 to 6.5, respectively. Enzyme activity is not inhibited by glucose, even at 200 mM, and remains highly stable in solution or immobilized at room temperature in the absence of protein stabilizers. In S. mitis, the enzyme was located attached to the cell surface, but a significant activity was also detected in the culture medium. This novel enzyme represents the first β-galactosidase having a modular structure with a choline-binding domain, a peculiar property that can also be useful for some biotechnological applications.Streptococcus mitis belongs to the viridans group of streptococci and is a relevant microorganism because it is both an opportunistic pathogen and phylogenetically close to Streptococcus pneumoniae, a major respiratory human pathogen. Although S. mitis isolates usually produce only mild infections, some S. mitis strains have acquired increased virulence and are one of the main causes of infectious endocarditis (15, 36). Remarkably, S. mitis, like only a few other streptococci, displays phosphorylcholine residues in its cellular envelope (3). This aminoalcohol is used for the anchorage of proteins belonging to the so-called “choline-binding proteins” (CBPs), which fulfill important physiological functions in these bacteria. CBPs bind to phosphorylcholine residues present in the teichoic and lipoteichoic acids located at the surface of S. pneumoniae and some streptococci of the mitis group. CBPs share a modular organization consisting of a biologically active domain and a conserved choline-binding domain (CBD), which contains 6 to 18 imperfect 20-amino-acid tandem repeats each located either at the carboxy- or amino-terminal ends of the proteins (26). This CBD is able to specifically bind to choline or its structural analogues like DEAE (diethylaminoethanol), which permits purification by affinity chromatography in a single step using DEAE-cellulose supports (38). Crystallographic studies of CBPs have shown that a typical CBD consists of several β-hairpins organized as a left-handed superhelix and that the linkage of CBPs to the choline-containing cell wall substrate is carried out through the binding of choline residues to the interface of two consecutive choline-binding repeats, named choline-binding sites (9, 13, 14).β-d-Galactosidases (β-d-galactoside galactohydrolase; EC 3.2.1.23) constitute a large family of proteins that cleave the glycosidic bond between two or more carbohydrates or between a carbohydrate and a noncarbohydrate moiety, e.g., lactose and related chromogens, like o-nitrophenyl-β-d-galactopyranoside (ONPG), p-nitrophenyl-β-d-galactopyranoside (PNPG), or 6-bromo-2-naphthyl-galactopyranoside. β-d-galactosidases belong to the glycosyl hydrolase (GH) superfamily, which contains 114 families (see http://www.CAZY.org) classified on the basis of amino acid sequence similarity (12). The enzymes exhibiting β-galactosidase activity are currently classified within four different families: GH-1, GH-2, GH-35, and GH-42. β-Galactosidases are widely distributed in nature and are present in numerous microorganisms (yeasts, fungi, bacteria, and archaea), plants, and animals (34, 44). These enzymes are of great interest for several industrial or biotechnological processes; the hydrolytic activity has been applied in the food industry for decades to reduce the lactose content of milk products in order to circumvent lactose intolerance, which is prevalent in more than half of the world''s population (27). More recently, interest in β-galactosidases has increased due to their ability to synthesize β-galactosyl derivatives that have received a great deal of attention owing to their important roles in many biological processes (27).In this study, we report the purification and biochemical characterization of a peculiar β-galactosidase encoded by the SMT1224 gene of S. mitis that represents a new type of β-galactosidase within this paradigmatic enzyme family.  相似文献   

13.
1. β-Amylase obtained by acidic extraction of soya-bean flour was purified by ammonium sulphate precipitation, followed by chromatography on calcium phosphate, diethylaminoethylcellulose, Sephadex G-25 and carboxymethylcellulose. 2. The homogeneity of the pure enzyme was established by criteria such as ultracentrifugation and electrophoresis on paper and in polyacrylamide gel. 3. The pure enzyme had a nitrogen content of 16·3%, its extinction coefficient, E1%1cm., at 280mμ was 17·3 and its specific activity/mg. of enzyme was 880 amylase units. 4. The molecular weight of the pure enzyme was determined as 61700 and its isoelectric point was pH5·85. 5. Preliminary examinations indicated that glutamic acid formed the N-terminus and glycine the C-terminus. 6. The amino acid content of the pure enzyme was established, one molecule consisting of 617 amino acid residues. 7. The pH optimum for pure soya-bean β-amylase is in the range 5–6. Pretreatment of the enzyme at pH3–5 decreases enzyme activity, whereas at pH6–9 it is not affected.  相似文献   

14.
Moonlighting proteins have two different functions within a single polypeptide chain. Exploring moonlighting enzymes from the environment using the metagenomic approach is interesting. In the present study, a novel β-glucosidase gene, designated as bgl1D, with lipolytic activity (renamed Lip1C) was cloned through function-based screening of a metagenomic library from uncultured soil microorganisms. The deduced amino acid sequence comparison and phylogenetic analysis also indicated that Lip1C and other putative lipases are closely related. Biochemical characterization demonstrated that the maximum activity of the recombinant Lip1C protein occurs at pH 8.0 and 30°C using 4-nitrophenyl butyrate as substrate. The putative lipase had an apparent K m value of 0.88 mmol/L, a k cat value of 212/min, and a k cat/K m value of 241 L/mmol/min. Lip1C exhibited habitat-specific characteristics with 5 mmol/L AlCl3, CuCl2, and LiCl. The characterization of the biochemical properties of Lip1C enhances our understanding of this novel moonlighting enzyme isolated from a soil metagenome.  相似文献   

15.
1. The activities of β-galactosidase, β-glucosidase, β-glucuronidase and N-acetyl-β-glucosaminidase from rat kidney have been compared when 4-methylumbelliferyl glycosides are used as substrates. 2. Separation by gel electrophoresis at pH7·0 indicated slow- and fast-moving components of rat-kidney β-galactosidase. 3. The fast-moving component is also associated with the total β-glucosidase activity and inhibition experiments indicate that a single enzyme species is responsible for both activities. 4. DEAE-cellulose chromatography and filtration on Sephadex gels suggests that the β-glucosidase component is a small acidic molecule, of molecular weight approx. 40000–50000, with optimum pH5·5–6·0 for β-galactosidase and β-glucosidase activities. 5. The major β-galactosidase component has low electrophoretic mobility, a calculated molecular weight of 80000 and optimum pH3·7.  相似文献   

16.
β-N-Acetylaminoglucohydrolase (β-2-acetylamino-2-deoxy-D-glucoside acetylaminodeoxyglucohydrolase, EC 3.2.1.30) was extracted from malted barley and purified. The partially purified preparation was free from α-and β-glucosidase, α- and β-galactosidase, α-mannosidase and β-mannosidase. This preparation was free from α-mannosidase only after affinity chromatography with p-amino-N-acetyl-β-D-glucosaminidine coupled to Sepharose. The enzyme was active between pH 3 and 6.5 and had a pH optimum at pH 5. A MW of 92000 was obtained by sodium dodecyl sulfate-acrylamide gel electrophoresis and a sedimentation coefficient of 4.65 was obtained from sedimentation velocity experiments. β-N-Acetylaminoglucohydrolase had a Km of 2.5 × 10?4 M using the p-nitrophenyl N-acetyl β-D-glucosaminidine as the substrate.  相似文献   

17.
A β-glucuronidase has been isolated from pig kidney and purified 1600-fold using sodium desoxycholate precipitation, ammonium sulphate fractionation, heat treatment and chromatography on Sephadex G200, DEAE-cellulose (DE-52) and hydroxyapatite. The enzyme activity was assayed using oestrone 3-glucuronide as substrate; the final specific activity was 254 nmol oestrone/min/mg of protein. The purified enzyme showed apparent homogeneity in gel filtration and polyacrylamide gel electrophoresis. The pig kidney β-glucuronidase has a single pH optimum of 4.0–4.4 in acetate- and 5.4 in citrate-buffer; an activation energy of 16,800 cal/mol and a molecular weight of 275,000 were estimated. The KM for oestrone 3-glucuronide was 22.6 μM. The enzyme was not inhibited by N-ethylmaleimide nor by dithioerythritol, however, it was strongly inhibited by Hg2+. Oestradiol-17β 3-glucuronide and oestriol 3-glucuronide acted as competitive inhibitors, whereas oestradiol-17β 17β-glucuronide, oestriol 16α-glucuronide, testosterone 17-glucuronide and cholesteryl 3-glucuronide were uncompetitive, pregnanediol 3-glucuronide was noncompetitive, and Cortisol 21-glucuronide gave a mixed type inhibition. The synthetic β-d-glucuronides of phenolphthalein, p-nitrophenol, naphthol, 6-bromo-naphthol and methylumbelliferone all inhibited the hydrolysis of oestrone 3-glucuronide; the inhibition was of a more complex type than simple competitive inhibition.  相似文献   

18.
《Phytochemistry》1987,26(4):1131-1138
The reaction of stictic, norstictic and salazinic acids with methanol, ethanol and tert-butanol has been investigated. 8′-O-Methylstictic acid is identical with methylstictic acid from Lobaria oregana. Ingolfdottir's vesuvianic acid from Stereocaulon vesuvianum and Handong's cetrariastrumin from Cetrariastrum nepalensis have been shown to be 8′-O-ethylstictic acid and 8′,9′-di-O-ethylsalazinic acid, respectively, by reaction of stictic and salazinic acids with ethanol.  相似文献   

19.
A new species, Amphibulus melanarius Zong, Sun & Sheng, sp.n., belonging to the tribe Phygadeuontini of the subfamily Cryptinae (Hymenoptera: Ichneumonidae), collected from Beijing, China, is reported. A key to the species of the genus Amphibulus Kriechbaumer, 1893 known in the Oriental and Eastern Palaearctic Regions is provided.  相似文献   

20.
The gene for a thermostable β-agarase from Agarivorans sp. JA-1 was cloned and sequenced. It comprised an open reading frame of 2,988 base pairs, which encode a protein of 109,450 daltons consisting of 995 amino acid residues. A comparison of the entire sequence showed that the enzyme has 98.8% sequence similarities to β-agarase from Vibrio sp. JT1070, indicating that it belongs to the family glycoside hydrolase (GH)-50. The gene corresponding to a mature protein of 976 amino acids was inserted and expressed in Escherichia coli. The recombinant β-agarase was purified to homogeneity. It had maximal activity at 40°C and pH 8.0 in the presence of 1 mM NaCl and 1 mM CaCl2. The enzyme hydrolyzed agarose as well as neoagarohexaose and neoagarotetraose to yield neoagarobiose as the main product. Thus, the enzyme would be useful for the industrial production of neoagarobiose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号