首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. An acid beta-galactosidase, optimum pH4.0-4.5, in the human small-intestinal mucosa was separated and characterized. 2. Autolysis of mucosal homogenates at acid pH inactivated the lactase and hetero beta-galactosidase; the total activity of the acid beta-galactosidase was only slightly depleted, but a greater proportion of the enzyme was solubilized by this treatment. 3. Separation on a Sephadex G-200 column revealed that the acid beta-galactosidase could occur in at least three different forms, probably representing monomer, dimer and octamer or polymer of the enzyme. 4. The properties of the different forms of the acid beta-galactosidase were studied with regard to pH optimum, K(m), rate of hydrolysis of different substrates, and sensitivity to p-chloromercuribenzoate and tris as inhibitors. All these properties were the same for the different forms of the enzyme. 5. The acid beta-galactosidase hydrolyses lactose as well as hetero beta-galactosides and contributes to the lactase activity of intestinal biopsies also when measured at pH 6. This enzyme may therefore be responsible for a considerable part of the residual lactase activity found in lactose-intolerant patients.  相似文献   

2.
β-Galactosidase was isolated from the cell-free extracts ofLactobacillus crispatus strain ATCC 33820 and the effects of temperature, pH, sugars and monovalent and divalent cations on the activity of the enzyme were examined.L. crispatus produced the maximum amount of enzyme when grown in MRS medium containing galactose (as carbon source) at 37°C and pH 6.5 for 2 d, addition of glucose repressing enzyme production. Addition of lactose to the growth medium containing galactose inhibited the enzyme synthesis. The enzyme was active between 20 and 60°C and in the pH range of 4–9. However, the optimum enzyme activity was at 45°C and pH 6.5. The enzyme was stable up to 45°C when incubated at various temperatures for 15 min at pH 6.5. When the enzyme was exposed to various pH values at 45°C for 1 h, it retained the original activity over the pH range of 6.0–7.0. Presence of divalent cations, such as Fe2+ and Mn2+, in the reaction mixture increased enzyme activity, whereas Zn2+ was inhibitory. TheK m was 1.16 mmol/L for 2-nitrophenyl-β-d-galactopyranose and 14.2 mmol/L for lactose.  相似文献   

3.
Kim CS  Ji ES  Oh DK 《Biotechnology letters》2003,25(20):1769-1774
Kluyveromyces lactis -galactosidase gene, LAC4, was expressed in Escherichia coli as a soluble His-tagged recombinant enzyme under the optimized culture conditions. The expressed protein was multimeric with a subunit molecular mass of 118 kDa. The dimeric form of the -galactosidase was the major fraction but had a lower activity than those of the multimeric forms. The purified enzyme required Mn2+ for activity and was inactivated irreversibly by imidazole above 50 mM. The activity was optimal at 37 and 40 °C for o-nitrophenyl--d-galactopyranoside (oNPG) and lactose, respectively. The optimum pH value is 7. The K m and V max values of the purified enzyme for oNPG were 1.5 mM and 560 mol min–1 mg–1, and for lactose 20 mM and 570 mol min–1 mg–1, respectively.  相似文献   

4.
《Plant science》1988,54(1):83-91
Lactose-adapted cells were obtained from Datura innoxia sucrose growing calli cultures and from Vinca minor glucose growing calli cultures. Lactose adaptation process points out the homogeneity of the cell population towards lactose uptake in V. minor cultures while it reveals the presence of heterogeneous population in D. innoxia cultures.In both species, lactose hydrolysis was only occurring in the cells; no lactase activity was detected in the culture medium. An intermittent lactase activity was determined in a cell-free extract during the culture period. Lactase activity was detected in Vinca glucose grown cells as well in Datura lactose-adapted cells cultured in absence of lactose; so lactase is a constitutive enzyme. Galactose liberated during lactose hydrolysis was not toxic for thecells; it was released into the culture medium and not metabolized in Vinca cultures while it was metabolized in Datura cultures at the end of the culture period.  相似文献   

5.
A genetic test of differences in -galactosidase activities in three mouse tissues, liver, kidney, and spleen, is demonstrated. Activities fall in three distinct categories in F 2 crosses between the two inbred strains C57BL/K1 and DBA/2/K1. C57 mice consistently show high activities in all three tissues, and DBA mice show low activities except for some male kidneys. F 1 mice are intermediate to the parental strains. There seems to be a simple mendelian ratio 1:2:1, between the numbers of animals belonging to the three activity classes in F 2 crosses and a 1:1 ratio in backcrosses. Thus it is suggested that one single locus is responsible for most of the differences seen in this system.This work was supported by the Nilsson-Ehle fund and the Marcus Borgström fund.  相似文献   

6.
A glucose-tolerant β-glucosidase was purified to homogeneity from prune (Prunus domestica) seeds by successive ammonium sulfate precipitation, hydrophobic interaction chromatography and anion-exchange chromatography. The molecular mass of the enzyme was estimated to be 61 kDa by SDS-PAGE and 54 kDa by gel permeation chromatography. The enzyme has a pI of 5.0 by isoelectric focusing and an optimum activity at pH 5.5 and 55 °C. It is stable at temperatures up to 45 °C and in a broad pH range. Its activity was completely inhibited by 5 mM of Ag+ and Hg2+. The enzyme hydrolyzed both p-nitrophenyl β-d-glucopyranoside with a Km of 3.09 mM and a Vmax of 122.1 μmol/min mg and p-nitrophenyl β-d-fucopyranoside with a Km of 1.65 mM and a Vmax of 217.6 μmol/min mg, while cellobiose was not a substrate. Glucono-δ-lactone and glucose competitively inhibited the enzyme with Ki values of 0.033 and 468 mM, respectively.  相似文献   

7.
The properties and distribution of -galactosidase were studied in the mouse brain using the artificial substrate methylumbelliferyl--galactoside. Enzyme activities were compared between an audiogenic seizure-susceptible mouse strain (DBA/2) and three non-susceptible strains of mice (BALB/c, C3H/He and Swiss A2G). At all ages, DBA/2 mice have significantly lower -galactosidase activity compared with the three other mouse strains: this is attributed to the different alleles present at the Bgs locus. The low activity of -galactosidase is also evident when the natural substrate GMI-ganglioside is hydrolyzed. In contrast to this low GMI-ganglioside--galactosidase activity, there is no difference in the activity of the second form of acid -galactosidase, galactosylceramidase, in DBA/2 mice at 7 and 14 days. However, at 21 and 28 days the activity is significantly lower in DBA/2 mice compared with the other strains of mice. These results on -galactosidase activity in the brain of seizure-susceptible and non-susceptible mice are discussed in relation to published levels of GMI-ganglioside and galactosylceramide present in the developing mouse brain.Dedicated to Henry McIlwain.  相似文献   

8.
《Phytochemistry》1987,26(4):927-932
Cotyledons of mature Lens culinaris seeds contain two forms of both α- and β-galactosidase which can be separated by ion exchange chromatography. These forms are present in cotyledon cell walls and protein bodies except β-galactosidase II,which is undetectable in the cell walls of these organs. All the enzymatic forms were active in an acid pH range but each behaved differently with different substrates, both natural and synthetic, and in the action of different effectors on the activity. α-Galactosidase I and II were able to release free sugars from several putative substrate oligosaccharides and all the forms of α and β-galactosidase were seen to release galactose from lentil storage glycoproteins.  相似文献   

9.
β-Galactosidase (EC: 3.2.1.23), one of the glycosidases detected in Erythrina indica seeds, was purified to 135 fold. Amongst the four major glycosidases detected β-galactosidase was found to be least glycosylated, and was not retained by Con-A CL Seralose affinity matrix. A homogenous preparation of the enzyme was obtained by ion-exchange chromatography, followed by gel filtration. The enzyme was found to be a dimmer with a molecular weight of 74 kDa and 78 kDa, by gel filtration and SDS-PAGE, respectively. The optimum pH and optimum temperature for enzyme activity were 4.4 and 50 °C, respectively. The enzyme showed a Km value of 2.6 mM and Vmax of 3.86 U/mg for p-nitrophenyl-β-D-galactopyranoside as substrate and was inhibited by Zn2+ and Hg2+. The enzyme activity was regulated by feed back inhibition as it was found to be inhibited by β-D-galactose. Chemical modification studies revealed involvement of tryptophan and histidine for enzyme activity. Involvement of tryptophan was also supported by fluorescence studies and one tryptophan was found to be present in the active site of β-galactosidase. Circular dichroism studies revealed 37% α helix, 27% β sheet and 38% random coil in the secondary structure of the purified enzyme.  相似文献   

10.
Summary Strains of Clostridium acetobutylicum were tested for the presence of -galactosidase and phospho--galactosidase activities when grown on lactose. All strains, except C. acetobutylicum ATCC 824, showed both enzyme activities. Only phospho--galactosidase activity was detected with C. acetobutylicum ATCC 824. C. acetobutylicum strains P262 and ATCC 824 showed no detectable -galactosidase or phospho--galactosidase activities when grown on glucose. In the fermentation of whey permeate C. acetobutylicum P262 showed an early induction of phospho--galactosidase associated with the acidogenic phase. The -galactosidase activity peaked at a later stage of the fermentation (22 h) coinciding with the solvent production phase. Similar induction of phospho--galactosidase at the early stages (13 h) of fermentation of whey permeate by C. acetobutylicum ATCC 824 was also shown. No -galactosidase activity was detected during the entire course of fermentation by strain ATCC 824.  相似文献   

11.
A chromosomal DNA fragment of 7.8 kb from Lactobacillus coryniformis CECT 5711 was cloned in Escherichia coli K-12 and was found to express a functional β-galactosidase. Nucleotide sequence analysis showed that this fragment contained two partially overlapping genes, the lacL (1,881 bp) and the lacM (960 bp), that encode the subunits of a heterodimeric β-galactosidase, with estimated molecular masses of 72,129 and 35,233 Da, respectively. Other three incomplete open reading frames showing homology to another β-galactosidase, an α-galactosidase, and a galactokinase, respectively, were also found. The L. coryniformis β-galactosidase was overproduced in E. coli by using an isopropyl-β-d-thiogalactopyranoside (IPTG) expression system. Two new proteins with an estimated M r s of approximately 72,000 and 35,000 appeared upon induction with IPTG, and extracts of the recombinant E. coli strain showed β-galactosidase activity.  相似文献   

12.
The kinetics of β-galactosidase synthesis induced by galactose and lactose inStreptomyces violaceus, as well as the pattern ofo-nitrophenyl-β-d-galactoside-positive bands observed after electrophoresis of both crude extracts, showed the presence of different β-galactosidase activities in the two cellular extracts. It is postulated that the lactase activity induced by lactose is the physiological enzyme responsible for lactose utilization. The possible function of the galactose-induced activity is also discussed.  相似文献   

13.
  • 1.1. Dog liver acid β-galactosidase was isolated in high yield and purified to homogeneity using a series of chromatographies on Con A-Sepharose, decyl-agarose, anion-exchange HPLC and gel-filtration HPLC.
  • 2.2. Non-denaturing gel filtration by HPLC gave a single homogeneous peak corresponding to molecular mass of 180–190 kDa. During SDS-PAGE analysis, the single peak dissociated into a major band corresponding to molecular mass of 32 kDa with minor bands at 18 and 13 kDa.
  • 3.3. Polyclonal antibodies raised against the purified enzyme immunoprecipitated β-galactosidase activity specifically from dog liver extracts and recognized a single 32 kDa band in Western blot analysis of dog tissue homogenates. This antibody did not crossreact with any protein band in tissue homogenates from other species examined except cat.
  • 4.4. Western blot analysis of tissue extracts from dogs affected with GMI-gangliosidosis showed the presence of a 32 kDa band similar to that of controls.
  相似文献   

14.
1. The activities of β-galactosidase, β-glucosidase, β-glucuronidase and N-acetyl-β-glucosaminidase from rat kidney have been compared when 4-methylumbelliferyl glycosides are used as substrates. 2. Separation by gel electrophoresis at pH7·0 indicated slow- and fast-moving components of rat-kidney β-galactosidase. 3. The fast-moving component is also associated with the total β-glucosidase activity and inhibition experiments indicate that a single enzyme species is responsible for both activities. 4. DEAE-cellulose chromatography and filtration on Sephadex gels suggests that the β-glucosidase component is a small acidic molecule, of molecular weight approx. 40000–50000, with optimum pH5·5–6·0 for β-galactosidase and β-glucosidase activities. 5. The major β-galactosidase component has low electrophoretic mobility, a calculated molecular weight of 80000 and optimum pH3·7.  相似文献   

15.
A novel β-galactosidase gene, zd410, was isolated by screening a soil metagenomic library. Sequence analysis revealed that zd410 encodes a protein of 672 amino acids with a predicted molecular weight of 78.6 kDa. The recombinant ZD410 was expressed and purified in Pichia pastoris, with a yield of ca. 300 mg from 1 L culture. The purified enzyme displayed optimal activity at 38°C and pH 7.0. Given that the enzyme had 54% of the maximal activity at 20°C and 11% of the maximal activity at close to 0°C, ZD410 was regarded as a cold-adapted β-galactosidase. ZD410 displays high enzymatic activity for its synthetic substrate-ONPG (o-nitrophenyl-β-d-galactopyranoside, 243 U/mg) and its natural substrate-lactose (25.4 U/mg), while its activity was slightly stimulated by addition of Na+, K+, or Ca2+ at low concentrations. ZD410 is a good candidate of β-galactosidases for food industry after further study.  相似文献   

16.
17.
Evidence for the identity of β-galactosidase and β-fucosidase enzymes in the house mouse was obtained by examination of the enzyme activities in animals from different crosses between C57BL/Kl mice with high galactosidase and fucosidase activities and DBA/2/Kl mice with low activities. There is a strong correlation between the activities of these two enzymes in different tissues of F2 animals. A comparison of the fractionation properties of β-galactosidase and β-fucosidase showed that the two activities had a parallel distribution and identical thermostability. These data suggest that the same enzyme catalyzes the hydrolysis of both substrates.  相似文献   

18.
High levels of an extracellular α-galactosidase are produced by the thermophilic fungus Thermomyces lanuginosus CBS 395.62/b when grown in submerse culture and induced by sucrose. The enzyme was purified 114-fold from the culture supernatant by (NH4)2SO4 fractionation, and by chromatographical steps including Sepharose CL-6B gel filtration, DEAE-Sepharose FF anion-exchange, Q-Sepharose FF anion-exchange and Superose 12 gel filtration. The purified enzyme exhibits apparent homogeneity as judged by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and iso-electric focusing (IEF). The native molecular weight of the monomeric α-galactosidase is 93 kDa with an isoelectric point of 3.9. The enzyme displays a pH and temperature optimum of 5–5.5 and 65 °C, respectively. The purified enzyme retains more than 90% of its activity at 45 °C in a pH range from 5.5 to 9.0. The enzyme proves to be a glycoprotein and its carbohydrate content is 5.3%. Kinetic parameters were determined for the substrates p-nitrophenyl-α-galactopyranoside, raffinose and stachyose and very similar Km values of 1.13 mM, 1.61 mM and 1.17 mM were found. Mn++ ions activates enzyme activity, whereas inhibitory effects can be observed with Ca++, Zn++ and Hg++. Five min incubation at 65° with 10 mM Ag+ results in complete inactivation of the purified α-galactosidase. Amino acid sequence alignment of N-terminal sequence data allows the α-galactosidase from Thermomyces lanuginosus to be classified in glycosyl hydrolase family 36.  相似文献   

19.
Noninvasive monitoring of intracellular targets such as enzymes, receptors, or mRNA by means of magnetic resonance imaging (MRI) is increasingly gaining relevance in various research areas. A vital prerequisite for their visualization is the development of cell-permeable imaging probes, which can specifically interact with the target that characterizes the cellular or molecular process of interest. Here, we describe a dual-labeled probe, Gd-DOTA-k(FR)-Gal-CPP, designed to report the presence of intracellular β-galactosidase (β-gal) enzyme by MRI. This conjugate consists of a galactose based core serving as cleavable spacer, incorporated between the cell-penetrating peptide D-Tat(49-57) and reporter moieties (Gd-DOTA, fluorescein (FR)). We employed a facile building block approach to obtain our bimodal probe, Gd-DOTA-k(FR)-Gal-CPP. This strategy involved the preparation of the building blocks and their subsequent assembly using Fmoc-mediated solid phase synthesis, followed by the complexation of ligand 14 with GdCl(3). Gd-DOTA-k(FR)-Gal-CPP showed a considerably higher relaxivity enhancement (16.8±0.6 mM(-1)s(-1), 123 MHz, ~21°C) relative to the commercial Gd-DOTA (4.0±0.12 mM(-1)s(-1), 123MHz, ~21 °C). The activation of Gd-DOTA-k(FR)-Gal-CPP was based on a cellular retention strategy that required enzymatic cleavage of the delivery vector from galactose moiety following the cell internalization to achieve a prolonged accumulation of the reporter components (Gd-DOTA/FR) in the β-gal expressing cells. Cellular uptake of Gd-DOTA-k(FR)-Gal-CPP in β-gal expressing C6/LacZ and enzyme deficient parental C6 rat glioma cells was confirmed by fluorescence spectroscopy, MR imaging and ICP-AES measurements. All methods showed higher accumulation of measured reporters in C6/LacZ cells compared to enzyme deficient parental C6 cells. Fluorescence microscopy of cells labeled with Gd-DOTA-k(FR)-Gal-CPP indicated a predominantly vesicular localization of the green fluorescent conjugate around cell nuclei. This cellular distribution was most likely responsible for the observed non-specific background signal in the enzyme deficient C6 cells. Even though the specific accumulation of our bimodal probe has to be further improved, it could be already used for cell imaging by MRI and optical modalities.  相似文献   

20.
-Galactosidase from B. coagulans strain L4 is produced constitutively, has a mol. wt. of 4.3×105 and an optimal temperature of 55°C. The optimal pH at 30°C is 6.0 whereas at 55°C it is 6.5. The energy of activation of enzyme activity is 41.9 kJ/mol (10 kcal/mol). No cations are required. The Km with ONPG as substrate is 4.2–5.6mm and with lactose is 50mm. The Ki for inhibition by galactose is 11.7–13.4mm and for dextrose is 50mm. Galactose inhibited competitively while dextrose inhibited noncompetitively. The purified and unprotected enzyme is 70% destroyed in 30 min at 55°C whereas in the presence of 2 mg/ml of BSA 42% of the activity is destroyed in 30 min at 55°C. An overall purification of 75.3-fold was achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号