首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exogenously supplied bovine haemin, fed to etiolated barley leaves, inhibited chlorophyll synthesis in leaves exposed to light. Haemin inhibited the regeneration of protochlorophyllide (P650) and the conversion of exogenously supplied δ-aminolaevulinate (ALA) to protochlorophyll (P630). The effect of haemin on chlorophyll production was overcome by incubating the leaves in water in the dark before light treatment, suggesting the operation of a rapid haem destruction mechanism in leaves. Protohaem turnover in dark-grown leaves was between 8 and 9 hr, based on the rate of degradation of erogenous haemin and the rate of protohaem breakdown in laevulinic acid (LA) treated leaves. The rate constant for haem destruction was 85 pmol/nmol/hr in the dark and 45 pmol/nmol/hr after 4 hr light. There was no evidence that light affects the synthesis of protohaem. It appears that the regulation of endogenous levels of protohaem is by breakdown and it is this mechanism which is under light control. Haem considerably decreased the incorporation of radioactivity from glycollate-[14C], glycine-[14C] and glutamate-[14C] into accumulated ALA in the presence of LA.  相似文献   

2.
The effects of 2,2′-bipyridyl on porphyrin formation differed in illuminated and dark-treated barley leaves. In the dark, bipyridyl treatment increased photoconvertible protochlorophyllide (Pchlide, P650) and decreased the protohaem content. The increase in Pchlide could not be wholly accounted for by a diversion of ‘substrate’ from protohaem synthesis. The rate of Pchlide regeneration was slightly higher in chelator treated leaves which suggests increased δ-aminolaevulinic acid (ALA) synthesis. Only small quantities of Mg-protoporphyrinmonomethylester (Mg-protoME) were detected in etiolated leaves treated with bipyridyl in the dark. Protochlorophyll (P630) synthesis from exogenously supplied ALA was lower in the chelator treatments. The results suggest that only when substantial quantities of ALA are being utilized in dark-grown leaves does a ‘metal’ become limiting in the bipyridyl treated leaves. In the light, bipyridyl inhibited chlorophyll synthesis, again suggesting that when substantial amounts of ALA were being utilized a ‘metal’ becomes rate limiting. Bipyridyl treatment also inhibited ALA production in light-treated leaves. The incorporation of glycine-[14C] into ALA in the presence of bipyridyl was severely restricted compared to the incorporation of glutamate-[14C]. The data suggest two pathways for ALA synthesis; the classical ALA-synthetase which utilizes glycine and is operative in dark-grown leaves and a second enzyme system, which uses glutamate, and is of quantitative importance in the light.  相似文献   

3.
The amounts of protochlorophyllide (P650) and protohaem were measured in ageing dark-grown barley leaves. Maximum amounts of P650 and protohaem were found in 6- to 8-day-old material after which P650 declined rapidly and protohaem more slowly. In leaves exposed to light maximum chlorophyll was produced in 6-day-old material with progressively less the older the leaves. Haem concentrations increased in seedlings of all ages exposed to light. A lag phase was observed for both chlorophyll and haem formation in leaves given a light treatment. Haem, however, showed a slight yet sig nificant decline as chlorophyll production commenced. The results indicate that chlorophyll and haem synthesis share a common pool of δ-aminolae vulinic acid (ALA). At a certain stage of development, the magnesium porphyrin pathway diverts precursors away from haem synthesis. It is only when the ALA synthesising system is well developed that the production of ALA can satisfy pathways to both haem and chlorophyll. The observed changes in haem under certain conditions suggest that, as in animal systems, haem levels may regulate porphyrin formation (chlorophylls) by controlling the supply of ALA.  相似文献   

4.
Treatment of barley seeds (Hordeum vulgare L.) with streptomycin, an inhibitor of plastid protein synthesis, resulted in growth of the albino phenotype seedlings with ribosome-deficient undifferentiated plastids and chlorophyll (Chl) level as low as 0.1% of that in control plant leaves. A major effect of the antibiotic was almost complete suppression of the ability of plants to synthesize 5-aminolevulinic acid (ALA) intended for Chl biosynthesis. The activity of synthesis of ALA intended for heme porphyrin biosynthesis in etiolated and greening seedlings and in light-grown albinophenotype plants was insensitive to light and cytokinins. In the upper parts of leaves of streptomycin-treated plants, exhibiting 60% Chl deficit, the cells with three types of chloroplasts could be observed: normally developed chloroplasts, chloroplasts composed of single thylakoids and grana, and completely undifferentiated plastids. In this Chl-deficient tissue, ALA synthesis was found to be stimulated by kinetin but much less than in leaves of the control plants. The endogenous cytokinin content in etiolated and greening seedlings treated with streptomycin was almost the same as it was in untreated control seedlings. The cytokinin level in the white tissue of plants grown in the light was on average twice as high as that in green leaves of the control plants. The capability of kinetin to stimulate the synthesis of ALA used for Chl biosynthesis was found to correlate with the Chl content and organization of the chloroplast internal structure. This correlation confirms the hypothesis that the normally developed internal structure of plastids is essential for the adequate phytohormone response in plants.  相似文献   

5.
Levulinic acid (LA), a competitive inhibitor of δ-aminolevulinic acid (ALA) dehydratase (EC 4.2.1.24), has been used extensively in the study of ALA formation during greening. When [1-14C]LA is administered to etiolated barley (Hordeum vulgare L. var. Larker) shoots in darkness, 14CO2 is evolved. This process is accelerated when such tissues are incubated with 2 millimolar ALA or placed under continuous illumination. Label from the C-1 of LA becomes incorporated into organic acids, amino acids, sugars, lipids, and proteins during a 4-hour incubation in darkness or in the light. This metabolism is discussed in relation to the use of LA as a tool in the study of chlorophyll synthesis in higher plants.  相似文献   

6.
Application of levulinic acid (LA), a competitive inhibitor of δ-aminolevulinic acid (ALA) dehydratase, to greening plant tissues causes ALA to accumulate at the expense of chlorophyll. 4,6-Dioxoheptanoic acid (DA), which has been reported to be an effective inhibitor of this enzyme in animal systems, has a similar but more powerful effect on ALA and chlorophyll metabolism in greening leaves of Hordeum vulgare L. var. Larker. Both LA and DA also inhibit the uptake of [14C]amino acids into etiolated and greening barley leaves and reduce their incorporation into protein. Treatment of etiolated and greening leaves with these compounds results in the inhibition of 14CO2 evolution from labeled precursors, including amino and organic acids. Inhibition of 14CO2 evolution by these compounds is more effective in greening leaves than in etiolated leaves when [4-14C]ALA or [1-14C]glutamate are employed as precursors. Both LA and DA also inhibit the uptake and increase the incorporation of 32Pi into organophosphorus by etiolated barley leaves. These results indicate that LA and DA have more far-reaching effects upon plant metabolism than was previously believed.  相似文献   

7.
Harel E  Ne'eman E 《Plant physiology》1983,72(4):1062-1067
Intact plastids from greening maize (Zea mays L.) leaves converted [14C]glutamate and [14C]2-ketoglutarate (KG) to [14C]5-aminolevulinic acid (ALA). Glutamate appeared to be the immediate precursor of ALA, while KG was first converted to glutamate, as shown by the effect of various inhibitors of amino acid metabolism. Plastids from greening leaves contained markedly higher activity as compared with etioplasts or chloroplasts. The synthesis of ALA by intact plastids was light dependent. The enzyme system resides in the stroma of plastids or may be lightly bound to membranes. The solubilized system showed maximal activity around pH 7.9 and required Mg2+, ATP, and NADPH although dependence on the latter was not clear-cut. A relatively high level of activity could be extracted from etioplasts. Maximal activity was obtained from plastids of leaves which had been illuminated for 90 minutes, after which activity declined sharply. The enzyme system solubilized from plastids also catalyzed the conversion of putative glutamate 1-semialdehyde to ALA in a reaction which was not dependent on the addition of an amino donor.

The system in maize greatly resembled the one which had been reported from barley. It is suggested that this system is the one responsible for the biosynthesis of ALA destined for chlorophyll formation.

  相似文献   

8.
5-Aminolevulinic acid (ALA) synthesis has been shown to be the rate limiting step of tetrapyrrole biosynthesis. Glutamyl-tRNA reductase (GluTR) is the first committed enzyme of plant ALA synthesis and is controlled by interacting regulators, such as heme and the FLU protein. Induced inactivation of the HEMA1 gene encoding GluTR by RNAi expression in tobacco resulted in a reduced activity of Mg chelatase and Fe chelatase indicating a feed-forward regulatory mechanism that links ALA synthesis posttranslationally with late enzymes of tetrapyrrole biosynthesis (Hedtke et al., 2007). Here, the regulatory impact of GluTR was investigated by overexpression of AtHEMA1 in Arabidopsis and tobacco plants. Light-dependent ALA synthesis cannot benefit from an up to 7-fold induced expression of GluTR in Arabidopsis. While constitutive AtHEMA1 overexpression in tobacco stimulates ALA synthesis by 50-90% during light-exposed growth of seedlings, no increase in heme and chlorophyll contents is observed. HEMA1 overexpression in etiolated and dark-grown Arabidopsis and tobacco seedlings leads to additional accumulation of protochlorophyllide. As excessive accumulation of GluTR does not correlate with increased ALA formation, it is hypothesized that ALA synthesis is additionally limited by other effectors that balance the allocation of ALA with the activity of enzymes of chlorophyll and heme biosynthesis.  相似文献   

9.
Induction of nitrate reductase EC 1.6.6.1 in etiolated barley (Hordeum vulgare L., var. Proctor) required continuous illumination and showed a lag period of about three hours. During the first 16 h of illumination the ratio NADH/NAD and NADPH/NADP, taken as a measure of internal oxidation reduction potential, declined. The inhibitor DCMU applied to whole leaves at concentrations shown to inhibit the reduction of cytochrome f by Photosystem 2 light did not inhibit the induction of nitrate reductase nor did it diminish the ratio of reduced to oxidised puridine nucleotides in the early hours of greening. It was concluded that light driven electron flow was not necessary for nitrate reductase induction. Chloramphenicol gave a slight inhibition of nitrate reductase induction. Laevulinic acid was added to greening barley leaves to inhibit tetrapyrrole pigment biosynthesis and plastid development. It strongly inhibited chlorophyll synthesis and nitrate reductase induction, with relatively little effect upon Photosystem 1 and 2 activities in isolated plastids. The activities of other inducible enzymes and control enzymes were little affected by laevulinic acid. Laevulinic acid also inhibited nitrate reductase induction by added nitrate in fully-greened illuminated plants grown in nitrate-free medium and so is unlikely to be acting through inhibition of plastid development. This inhibitor lowered the level of protohaem in whole leaves and plastids of greening barley and it is postulated that it may diminish the protohaem available for the assembly of a cytochrome b component of nitrate reductase.Abbreviations DCMU 3-(3:4-Dichlorophenyl)-1:1-dimethylurea - LA laevulinic acid  相似文献   

10.
The incorporation of radioactive aminolevulinic acid (ALA) into chlorophyll (Chl) a and b , as well as protochlorophyllide (Pchlide) in light-grown barley seedlings ( Hordeum vulgare L. cv. Clipper) transferred to darkness is demonstrated.
In the experiments described, 6-day-old, glasshouse-grown seedlings were transferred to darkness and incubated in [14C]- or [3H]- ALA for 18 h.
Chl a and b were extracted and purified to constant specific radioactivity by HPLC and TLC of their magnesium-free derivatives, pheophytin a and b . The presence of label in the tetrapyrrole ring of the Chls was established by removal of the phytol chain by alkaline hydrolysis and determination of the specific radioactivity of the chlorin e 6 and rhodin g 7 derivatives.
Barley seedlings that had been grown in darkness for 5 days, transferred to light for 20 h, and then returned to darkness in the presence of radioactive ALA also incorporated label into Chl. However, this was only apparent in intact seedlings. Excised leaves from greened etiolated plants did not incorporate ALA into Chl in darkness. This was consistent with the finding of Apel et al. (K. Apel, M. Motzkus and K. Dehesh, 1984. Planta 161: 550–554) and may account for their failure to obtain evidence for a light-independent protochlorophyllide reductase in greening barley.
Although the incorporation of ALA into Chl compared to Pchlide was slight (5%), the presence of label in the tetrapyrrole nucleus of Chl a and b is unequivocal evidence of a light-independent pathway of Chl biosynthesis in barley that has been exposed to light during development. Limited entry of exogenous labelled ALA into the precursor pools leading to the dark reduction of Pchlide is postulated.  相似文献   

11.
Cytokinin promotes morphological and physiological processes including the tetrapyrrole biosynthetic pathway during plant development. Only a few steps of chlorophyll (Chl) biosynthesis, exerting the phytohormonal influence, have been individually examined. We performed a comprehensive survey of cytokinin action on the regulation of tetrapyrrole biosynthesis with etiolated and greening barley seedlings. Protein contents, enzyme activities and tetrapyrrole metabolites were analyzed for highly regulated metabolic steps including those of 5-aminolevulinic acid (ALA) biosynthesis and enzymes at the branch point for protoporphyrin IX distribution to Chl and heme. Although levels of the two enzymes of ALA synthesis, glutamyl-tRNA reductase and glutamate 1-semialdehyde aminotransferase, were elevated in dark grown kinetin-treated barley seedlings, the ALA synthesis rate was only significantly enhanced when plant were exposed to light. While cytokinin do not stimulatorily affect Fe-chelatase activity and heme content, it promotes activities of the first enzymes in the Mg branch, Mg protoporphyrin IX chelatase and Mg protoporphyrin IX methyltransferase, in etiolated seedlings up to the first 5 h of light exposure in comparison to control. This elevated activities result in stimulated Chl biosynthesis, which again parallels with enhanced photosynthetic activities indicated by the photosynthetic parameters F V/F M, J CO2max and J CO2 in the kinetin-treated greening seedlings during the first hours of illumination. Thus, cytokinin-driven acceleration of the tetrapyrrole metabolism supports functioning and assembly of the photosynthetic complexes in developing chloroplasts.  相似文献   

12.
Recently, some evidence for the occurence of a light-independent protochlorophyllide-reducing enzyme in greening barley plants has been presented. In the present work this problem was reinvestigated. -[14C] Aminolevulinic acid was fed to isolated barley shoots from plants which had been preilluminated for various lengths of time. Porphyrins which had been synthesized during the dark incubation were analyzed by high-performance liquid chromatography. There was no evidence for a light-independent synthesis of chlorophyll(ide). The 14C-labelled precursor was incorporated almost exclusively into protochlorophyllide. The reduction of labelled protochlorophyllide to chlorophyllide was strictly light-dependent. These results are not consistent with the existence of a light-independent protochlorophyllide-reductase in barley as proposed previously.Abbreviation HPLC high-performance liquid chromatography  相似文献   

13.
Formation of the chlorophyll and heme precursor δ-aminolevulinic acid (ALA) from glutamate in soluble extracts of Chlorella vulgaris, Euglena gracilis, and Cyanidium caldarium was stimulated by addition of low molecular weight RNA derived from greening algae or plant tissue. Enzyme extracts were prepared for the ALA formation assay by high-speed centrifugation, partial RNA depletion, and gel filtration through Sephadex G-25. RNA was extracted from greening barley epicotyls, greening cucumber cotyledon chloroplasts, and growing cells of Chlorella, Euglena, Chlamydomonas reinhardtii, and Anacystis nidulans, freed of protein, and fractionated on DEAE-cellulose to yield an active component corresponding to the tRNA-containing fraction. RNA from homologous and heterologous species stimulated ALA formation when added to enzyme extracts, and the degree of stimulation was proportional to the amount of RNA added. Algal enzyme extracts were stimulated by algal RNAs interchangeably, with the exception of RNA prepared from aplastidic Euglena, which did not stimulate ALA production. RNA from greening cucumber cotyledon chloroplasts and greening barley epicotyls stimulated ALA formation in algal enzyme incubations. In contrast, tRNA from Escherichia coli, both nonspecific and glutamate-specific, as well as wheat germ, bovine liver, and yeast tRNA, failed to reconstitute ALA formation. Moreover, E. coli tRNA inhibited ALA formation by algal extracts, both in the presence and absence of added algal RNA. Chlorella extracts were capable of catalyzing aminoacyl bond formation between glutamate and both the activity reconstituting and nonreconstituting RNAs, indicating that the inability of some RNAs to stimulate ALA formation was not due to their inability to serve as glutamyl acceptors. The first step in the ALA-forming reaction sequence has been proposed to be activation of glutamate via aminoacyl bond formation with a specific tRNA, analogous to the first step in peptide bond formation. Our results suggest that the RNA that is required for ALA formation may be functionally distinct from the glutamyl-tRNA species involved in protein synthesis.  相似文献   

14.
Meller E  Gassman ML 《Plant physiology》1981,67(6):1065-1068
4,6-Dioxoheptanoic acid (DA), an inhibitor of 5-aminolevulinic acid (ALA) dehydratase (EC 4.3.1.24), causes ALA to accumulate at the expense of chlorophyll when applied to greening leaves of Hordeum vulgare L. var. Larker. Preincubating etiolated leaves with DA in darkness eliminates the lag phase in ALA accumulation during a subsequent exposure to illumination. More than 50% of the DA taken up during a 2-hour incubation disappeared during a subsequent 4-hour incubation. These results suggest that barley leaves can metabolize DA, and the products of this metabolism may enhance the capacity for ALA synthesis.  相似文献   

15.
The Arabidopsis thaliana genome has two genes (AtFC-I and AtFC-II), encoding ferrochelatase, the terminal enzyme of haem biosynthesis. The roles of the two enzymes in the synthesis of haem for different haemoproteins was investigated using reporter gene analysis. A 1.41 kb fragment from the 5' upstream region of the AtFC-II gene was fused to the luciferase gene, and then introduced into tobacco plants, followed by luciferase activity measurements. AtFC-II-LUCwas expressed in all aerial parts of the plant, and was highest in flowers, but it was not expressed in roots. It was unaffected by viral infection, and considerably reduced by wounding or oxidative stress. Similarly, a 1.76 kb region of the AtFC-I promoter was fused to the uidAgene encoding -glucuronidase. AtFC-I-GUS was expressed in all tissues of the plant, but was higher in roots and flowers than in leaves or stems. It was induced by sucrose, wounding and oxidative stress and, most markedly, by plants undergoing the hypersensitive response to TMV infection. Levels of endogenous ferrochelatase activity were increased in pea chloroplasts isolated from wounded leaves, indicating that the induction in promoter activity is likely to result in increased haem biosynthetic potential. Salicylic acid, but not methyl-jasmonate was able to replace the stress treatment in induction of AtFC-I expression, suggesting that the requirement for haem synthesis is part of the defence response. The implications of the results for the different roles of the two ferrochelatases in haem biosynthesis are discussed.  相似文献   

16.
The tetratricopeptide repeat (TPR)-containing protein FLU is a negative regulator of chlorophyll biosynthesis in plants. It directly interacts through its TPR domain with glutamyl-tRNA reductase (GluTR), the rate-limiting enzyme in the formation of δ-aminolevulinic acid (ALA). Delineation of how FLU binds to GluTR is important for understanding the molecular basis for FLU-mediated repression of synthesis of ALA, the universal tetrapyrrole precursor. Here, we characterize the FLU-GluTR interaction by solving the crystal structures of the uncomplexed TPR domain of FLU (FLUTPR) at 1.45-Å resolution and the complex of the dimeric domain of GluTR bound to FLUTPR at 2.4-Å resolution. Three non-canonical TPR motifs of each FLUTPR form a concave surface and clamp the helix bundle in the C-terminal dimeric domain of GluTR. We demonstrate that a 2:2 FLUTPR-GluTR complex is the functional unit for FLU-mediated GluTR regulation and suggest that the formation of the FLU-GluTR complex prevents glutamyl-tRNA, the GluTR substrate, from binding with this enzyme. These results also provide insights into the spatial regulation of ALA synthesis by the membrane-located FLU protein.  相似文献   

17.
The immediate precursor in the synthesis of tetrapyrroles is Δ-aminolevulinate (ALA). ALA is synthesized from glutamate in higher plants, algae, and certain bacteria. Glutamate 1-semialdehyde aminotransferase (EC 5.4.3.8) (GSA-AT), the third enzyme involved in this metabolic pathway, catalyzes the transamination of GSA to form ALA. The gene encoding this aminotransferase has previously been isolated from barley (Hordeum vulgare) and inserted into an Escherichia coli expression vector. We describe herein the purification of this recombinant barley GSA-AT expressed in Escherichia coli. Coexpression of GroEL and GroES is required for isolation of active aminotransferase from the soluble protein fraction of Escherichia coli. Purified GSA-AT exhibits absorption maxima characteristic of vitamin B6-containing enzymes. GSA-AT is primarily in the pyridoxamine form when isolated and can be interconverted between this and the pyridoxal form by addition of 4,5-dioxovalerate and 4,5-diaminovalerate. The conversion of GSA to ALA under steady-state conditions exhibited typical Michaelis-Menten kinetics. Values for Km (d,l-GSA) and kcat were determined to be 25 micromolar and 0.11 per second, respectively, by nonlinear regression analysis. Stimulation of ALA synthesis by increasing concentrations of d,l-GSA at various fixed concentrations of 4,5-diaminovalerate supports the hypothesis that 4,5-diaminovalerate is the intermediate in the synthesis of ALA.  相似文献   

18.
The 7- to 8-day-old barley (Hordeum vulgare L.) seedlings grown in KNO3 solutions (1-40 mM) were characterized by the substrate activation of nitrate reductase (NR) in the apical leaf segments (1–2 cm in length), as well as by stimulated growth, broadened leaf blades, and by vigorously developed system of shortened roots. When the seedlings were grown in the presence of 20 mM KNO3, the ability of leaf segments to generate superoxide anion radical remained at the level typical of control plants grown in water. The content of 5-aminolevulinic acid (ALA) in plants grown in the presence of 20 mM KNO3 was 2.2–2.4 times higher than in control plants. The plants grown in the presence of nitrate had an elevated content of chlorophylls a and b, heme, and protein (by 42%). At the same time, the proline content was almost twofold lower than in control plants, which was due to substantial reduction (by 40%) in activity of Δ1-pyrroline-5-carboxylate synthetase (P5CS). It is concluded that the substrate activation of NR by KNO3 under normal growth conditions results in predominant utilization of glutamic acid (the primary product of inorganic nitrogen assimilation) for biosynthesis of tetrapyrroles and protein amino acids at the expense of inhibition of proline synthesis. When barley seedlings were grown in 150 mM NaCl solution, the plant growth and the root system development were suppressed to the levels of 63 ± 6% and 61 ± 11% of the control values, respectively. In the apical leaf tissues of plants adapted to NaCl, there was a slight decrease in the total NR activity (by 10%), a significant reduction in protein content (by 32%), and a parallel increase in the content of ALA (by a factor of 4.3), chlorophylls, heme, carotenoids, proline (2.2-fold) and P5CS (1.6-fold) with respect to the control values. It is proposed that the accumulation of ALA and proline under salinity-induced suppression of nitrogen assimilation results from the predominant allocation of glutamate for biosyntheses of ALA and proline at the expense of inhibition of growth-related processes requiring intense protein synthesis. The substrate activation of NR by KNO3 under salinity conditions was associated with prevailing allocation of the assimilated nitrogen for synthesis of proline and protein amino acids, which reinforced plant cell protection against salinity and stimulated plant growth.  相似文献   

19.
A toxin that induced chlorotic haloes (typifying haloblight disease) on primary leaves of Phaseolus vulgaris L. (var. Canadian Wonder) was partially purified from culture filtrates of the causative agent Pseudomonas phaseolicola (Burkh.) Dowson. This material was used to investigate chlorosis induction. Haloes could only be induced in those bean leaves that were expanding and synthesizing chlorophyll (Chl); the toxin, therefore, does not promote Chl breakdown. Chl, carotene, and xanthophyll synthesis were inhibited in sections of greening barley (Hordeum vulgare L.) leaves, irrespective of the irradiance level. In parallel experiments, the toxin decreased the level of 5-aminolevulinic acid by amounts sufficient to account for toxin-inhibition of Chl synthesis. Electron microscopy revealed no difference between the transformation of etioplasts into chloroplasts in toxin-treated and control tissue, despite a 60% reduction in Chl in the former. The incorporation of [14C]acetate into lipid by greening barley leaf sections and by isolated Pisum sativum chloroplasts in the light and the dark was inhibited about 60% by the toxin. The distribution of radioactivity among the spectra of acyl residues was the same in the control and toxin-treated material. It is suggested that the toxin interferes with an early process common to the synthesis of different lipids, including Chl.  相似文献   

20.
The development of haem biosynthetic enzyme activity during normoblastic human erythropoiesis was examined in seven patients. The first and last enzymes of the haem biosynthetic pathway, ALA synthase and ferrochelatase, were assayed by radiochemical/high performance liquid chromatographic (HPLC) methods. An assay for ferrochelatase activity in human bone marrow was developed. Enzyme substrates were protoporphyrin IX and 59Fe2+ ions. 59Fe-labelled haem was isolated by organic solvent extraction/sorbent extraction followed by reversed-phase HPLC. Optimal activity occurred at pH 7.3 in the presence of ascorbic acid, in darkness and under anaerobic conditions. Haem production was proportional to cell number and was linear with time to 30 min. The assay was sensitive to the picomolar range of haem production. ALA synthase and ferrochelatase activity was assayed in four highly purified age-matched erythroid cell populations. ALA synthase activity was maximal in the most immature erythoid cells and diminished as the cells matured with an overall five fold loss of activity from proerythroblast to late erythroblast development. Ferrochelatase activity was, however, more stable with less than a two fold change in activity observed during the same period of erythroid differentiation. Maximal activity occurred in erythroid fractions enriched with intermediate erythroblasts. These results support sequential rather than simultaneous appearance of these enzymes during normoblastic erythropoiesis. Quantitative analysis of relative enzyme activity however indicates that at all times during erythroid differentiation ferrochelatase activity is present in excess to that theoretically required relative to ALA synthase activity since ALA and haem are not produced in stoichiometric amounts. The lability of ALA synthase versus the stability and gross relative excess of ferrochelatase activity indicates a far greater role for ALA synthase in the regulation of erythroid haem biosynthesis than for ferrochelatase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号