首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Total starch, amylose content and amylose-included lipid phosphorus and lysophosphatidylcholine (LPC) were measured in normal Glacier (G) and Hi Amylose Glacier (HA) barley varieties during germination. From days three to six, alkaline and acidic lysophospholipase (LPL) activities in the starchy endosperm were measured and the distribution of these activities between a soluble and particulate form determined. During germination the amylose content of the starches increases as the total starch levels decline. The starch-bound LPC and lipid phosphorus disappear at the same rate between days three and six in both barley varieties, indicating no discrimination among the different lipid-included amylose population for degradation. However, both lipid phosphorus and LPC disappear more rapidly in the G than in the HA variety. This is presumably due to the slightly larger content of LPC per mg amylose of the G than of the HA variety, equivalent to 134 and 150 anhydroglucose residues per lipid molecule in G and HA, respectively. There is no increase in starch-bound lipid phosphorus or LPC expressed as nmol of phosphorus or LPC per mg amylose as amylose content declines, indicating no selective resistance of lipid-included amylose to degradation. The alkaline and acidic LPC activities in each variety increase 2–4-fold between days four and five. In both varieties ca 30% of the acidic LPL and ca 50–60% of the alkaline LPL is particulate from days three to six. No correlation can be made between the content of amylose or amylose-included lipid and particulate LPL activity. However, the possibility that particulate LPL activity is associated with specific populations of residual amylose-included lipid molecules cannot be excluded.  相似文献   

2.
Acetate-2-[14C] and choline-Me-[ 14C], absorbed through the stems of isolated barley heads, were used to label lysophosphatidylcholine (LPC) and phosphatidylcholine (PC) of the endosperm tissue. Labelling of LPC occurred in barley heads at almost all stages of development but was at a maximum when the fr. wt of the seeds had attained ca 60–70% of their maximum wt. In time-course experiments labelling of PC from each substrate reached a maximum after 50 hr and then declined. Label in LPC, however, continued to accumulate throughout 72 hr. Stimulation of labelling of LPC from choline-Me-[14C] by sucrose was observed. A bound form of LPC (starch lipid) and a free form were distinguished by differential solvent extraction.  相似文献   

3.
Lysophospholipase was measured in extracts of germinating barley by determining the amount of free [14C]palmitate released from [1-14C] 1-palmitoyl-lysophosphatidylcholine (LPC). Soluble and particulate lysophospholipase activity was measured at 1-day intervals in extracts from the aleurone and endosperm of barley seeds germinated for 8 days. The soluble and particulate activities of the aleurone increase approximately in parallel with one another and after 8 days of germination have 20–30 times more activity than at day 1. The activity profiles and the distribution of the activity between the soluble and particulate forms of lysophospholipase in the endosperm are markedly different. With the exception of the first 2 days when the aleurone activity is low, the endosperm activity is less than that associated with the aleurone. The soluble activity increases during the first 3 days and is more active than that of the aleurone. Thereafter it diminishes and remains low. The particulate enzyme, however, increases dramatically between days 4 and 5 and remains moderately high. The fourth and fifth day represent that stage of germination when starch-bound LPC is released in concert with the increase in amylase activity. It is proposed that it is this particulate form of the endosperm activity which may be responsible for maintaining the level of free LPC low in the endosperm of the germinating seed.  相似文献   

4.
At least two kinds of lipid vesicles are present in pea and bean cotyledons which can be recognized at seed maturity on the basis of whether they do or do not interassociate into lipid vesicle sheets. Those that do interassociate into sheets are also characterized by (a) their association with plastids or plasma membranes during dormancy, and (b) the unique transformation into flattened saccules that they undergo during the first few days of seed germination. These interassociated (or composite) lipid vesicles have been found in only a few seeds and may be restricted to certain classes of plants and/or certain states of cellular development. Lipid vesicle-to-saccule transformation is predominantly confined to the germinating seed. However, some lipid vesicle-derived saccules are already present in some cells even before the seed reaches maturity. These partially transformed vesicles and saccules remain unchanged over dormancy, and then resume their transformation when the seed is germinated. This suggests that some stages of seed germination are already underway before the seed reaches maturity and are only resumed at seed germination. The lipid vesicles that do not interassociate into sheets (i.e., the simple lipid vesicles) are present in all tissues at all states of cellular development. These vesicles do not undergo any conspicuous structural changes during development.  相似文献   

5.
6.
During 7 d of precocious maturation of soybean seed (Glycinemax), the starch content declined and soluble sugar levels increasedin patterns similar to natural seed dehydration and maturation.Total seed protein content and total seed dry weight increasedwhereas oil content remained relatively unchanged. Overall,the proportions of the constituents in precociously maturedseeds were comparable to naturally mature seeds. Precociouslymatured soybean seeds showed much the same germination and seedlinggrowth frequency patterns as naturally matured seeds. Duringgermination and seedling growth of precociously matured seeds,starch, soluble sugar, protein and oil levels followed patternssimilar to naturally mature, germinating seeds and seedlings.Therefore, precocious maturation may be used as a model systemto investigate the control of the physiological and biochemicalevents occurring during seed maturation which lead to germinationand subsequently, seedling growth. Glycine max (L.) Merr., soybean, cotyledons, maturation, germination/seedling growth  相似文献   

7.
Periploca sepium Bunge is a native and widespread shrub on the Loess Plateau, an arid and semi-arid region in China. To understand the adaptability of its seed germination to dry environments, we investigated the germination rate, water relations, lipid peroxidation, antioxidant capacity and accumulation of major organic solutes during seed germination under water deficit conditions. Results showed that seeds pre-treated by hydration–dehydration or ?0.9 MPa PEG germinated faster than control seeds, indicating strong resistance of P. sepium to drought condition. The re-dried seeds showed higher proline, total free amino acids (TFAA) and soluble proteins (SP) contents than control dry seeds, indicating the maintenance of physiological advancement when dehydrated. Osmotic stress made seed germination stay on the plateau phase (phase II). However, germinating seeds moved into phase III immediately once transferred into distilled water. Large increases in SP and soluble sugars (SS) of both re-dried and osmotic stressed seeds help themselves to resist drought stress. The re-hydrated seeds showed significantly higher levels of proline, TFAA, SP and SS than control seeds. The largely accumulated SS during osmotic stress declined sharply when transferred into distilled water. Our data demonstrate that P. sepium’s tolerance to drought stresses during germination is associated with enhanced activity of antioxidant enzymes and accumulation of some compatible solutes. Seed physiological advancement progressed slowly under low water conditions and it was maintained when seeds were air dried. This strategy ensures high and more rapid seed germination of P. sepium under drying and wetting conditions in drought-prone regions.  相似文献   

8.

Background and Aims

Flooding slows seed germination, imposes fatalities and delays seedling establishment in direct-seeded rice. This study describes responses of contrasting rice genotypes subjected to flooding or low oxygen stress during germination and discusses the basis of tolerance shown by certain cultivars.

Methods

In one set of experiments, dry seeds were sown in soil and either watered normally or flooded with 10 cm of water. Seedling survival and shoot and root growth were assessed and seed portions of germinating seedlings were assayed for soluble sugars and starch concentrations. The whole germinating seedlings were assayed for amylase and peroxidase activities and for ethylene production. Activities of enzymes associated with anaerobic respiration were examined and gene expression was analysed separately with seeds germinating under different amounts of dissolved oxygen in dilute agar.

Key Results

Flooding during germination reduced survival but to a lesser extent in tolerant genotypes. Starch concentration in germinating seeds decreased while sugar concentration increased under flooding, but more so in tolerant genotypes. Amylase activity correlated positively with elongation (r = 0·85 for shoot and 0·83 for root length) and with plant survival (r = 0·92). Tolerant genotypes had higher amylase activity and higher RAmy3D gene expression. Ethylene was not detected in seeds within 2 d after sowing, but increased thereafter, with a greater increase in tolerant genotypes starting 3 d after sowing. Peroxidase activity was higher in germinating seeds of sensitive genotypes and correlated negatively with survival.

Conclusions

Under low oxygen stress, tolerant genotypes germinate, grow faster and more seedlings survive. They maintain their ability to use stored starch reserves through higher amylase activity and anaerobic respiration, have higher rates of ethylene production and lower peroxidase activity as germinating seeds and as seedlings. Relevance of these traits to tolerance of flooding during germination and early growth is discussed.Key words: Amylase, anoxia, crop establishment, direct-seeded rice, ethylene, flooding, germination, hypoxia, Oryza sativa  相似文献   

9.
We have characterized a gene (Ltp1) encoding a barley lipid transfer protein. Northern blot analysis showed that Ltp1 mRNA accumulates specifically in the aleurone layer of developing and germinating seeds. Southern blot analysis indicated that LTP1 protein is encoded by a single gene in barley. Sequence analysis of Ltp1 showed that it contains an open reading frame of 351 bp interrupted by a single intron of 133 bp. Transient expression assays indicated that 702 bp of the 5 upstream region of Ltp1 is sufficient to direct aleurone-specific expression during late seed development and early germination.  相似文献   

10.
Endosperms of quiescent barley grains contained, on average, 54.5 μg of neutral glyceride-glycerol, equivalent to ca 480 μg glyceride. Of this probably 90% was located in the aleurone layer. During germination the level of glyceride-glycerol declined. It also declined in degermed grains and aleurone layers incubated in vitro. The fall was accelerated by GA3, but indoleacetic acid, kinetin and glutamine were without effect. Increases in the levels of malate synthase and isocitrate lyase from very low initial values, and the results of incorporation studies with [14C]-labelled substrates, indicate that the glyoxylate cycle functions to convert glycerides to sucrose in germinating grains and degermed grains incubated with GA3, but not in degermed grains without the hormone. In the absence of GA3 the glyceride could be a respiratory substrate in degermed grains. The aleurone layers converted exogenous glucose to sucrose. Little label from [14C]-amino acids appeared in sucrose but in some cases considerable incorporation occurred into glutamine.  相似文献   

11.
Altering the level of phytic acid phosphorus by nutritional means had no effect on the ability of soybean (Glycine max L. [Merr.], cv `Williams 79') seeds to germinate under laboratory or greenhouse conditions. Dry matter moved out of the cotyledons at similar rates whether the germinating seeds initially contained low (0.19), medium (0.59), or high (1.00 milligram per seed) phytic acid phosphorus. Growth of roots and shoots from 3 to 9 days after planting was similar for seeds containing low and medium levels of phytic acid phosphorus. The medium level of phytic acid resembles that found in field-grown seed, so it is clear that soybean seeds normally contain a phosphorus reserve far above that needed for germination and early seedling growth.  相似文献   

12.
Chilling depresses seed germination and seedling establishment, and is one major constraint to grain yield formation in late sown winter wheat. Seeds of winter wheat (Triticum aestivum L.) were separately pre-soaked with sodium nitroprusside (SNP, as nitric oxide donor) and Gibberellic acid (GA3) before germination and then germinated under low temperature. SNP and GA3 pre-treatment increased seed germination rate, germination index, weights and lengths of coleoptile and radicle, while they decreased mean germination time and weight of seeds germinating under low temperature. Exogenous NO and GA3 increased seed respiration rate and promoted starch degradation along with increased amylase activities. In addition, efficient antioxidant systems were activated by NO, and which effectively reduced concentrations of malondialdehyde and hydrogen peroxide (H2O2). Seedling growth was also enhanced by exogenous NO and GA3 as a result of improved seed germination and maintenance of better reactive oxygen species homeostasis in seedling growing under chilling temperatures. It is indicated that exogenous NO was more effective than GA3 in alleviating chilling stress during seed germination and seedling establishment in wheat.  相似文献   

13.
The time sequence analysis of the starch digestion pattern of the thin sectioned germinating rice (Oryza sativa L.) seed specimens using the starch film method showed that at the initial stage amylase activity was almost exclusively localized in the epithelium septum between the scutellum and endosperm. Starch breakdown in the endosperm tissues began afterward; amylase activity in the aleurone layers was detectable only after 2 days. Polyacrylamide gel electrofocusing (pH 4 to 6) revealed nearly the same zymogram patterns between endosperm and scutellum extracts, although additional amylase bands appeared in the endosperm extracts at later germination stages (4 to 6 days). These are presumably attributable to the newly synthesized enzyme molecules in the aleurone cells.  相似文献   

14.
Murata T 《Plant physiology》1968,43(12):1899-1905
Time-sequence analyses of carbohydrate breakdown in germinating rice seeds shows that a rapid breakdown of starch reserve in endosperm starts after about 4 days of germination. Although the major soluble carbohydrate in the dry seed is sucrose, a marked increase in the production of glucose and maltooligosaccharides accompanies the breakdown of starch. Maltotriose was found to constitute the greatest portion of the oligosaccharides throughout the germination stage. α-Amylase activities were found to parallel the pattern of starch breakdown. Assays for phosphorylase activity showed that this enzyme may account for much smaller amounts of starch breakdown per grain, as compared to the amounts hydrolyzed by α-amylase. There was a transient decline in the content of sucrose in the initial 4 days of seed germination, followed by the gradual increase in later germination stages. During the entire germination stage, sucrose synthetase activity was not detected in the endosperm, although appreciable enzyme activity was present in the growing shoot tissues as well as in the frozen rice seeds harvested at the mid-milky stage. We propose the predominant formation of glucose from starch reserves in the endosperm by the action of α-amylase and accompanying hydrolytic enzyme(s) and that this sugar is eventually mobilized to the growing tissues, shoots or roots.  相似文献   

15.
Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro-structure was achieved by decreasing starch branching and increasing starch-bound phosphate content in the barley caryopsis starch by RNAi suppression of all three Starch Branching Enzyme (SBE) isoforms or overexpression of potato Glucan Water Dikinase (GWD). The resulting lines displayed Amylose-Only (AO) and Hyper-Phosphorylated (HP) starch chemotypes, respectively. We studied the influence of these alterations on primary metabolism, grain composition, starch structural features and starch granule morphology over caryopsis development at 10, 20 and 30 days after pollination (DAP) and at grain maturity. While HP showed relatively little effect, AO showed significant reduction in starch accumulation with re-direction to protein and β-glucan (BG) accumulation. Metabolite profiling indicated significantly higher sugar accumulation in AO, with re-partitioning of carbon to accumulate amino acids, and interestingly it also had high levels of some important stress-related metabolites and potentially protective metabolites, possibly to elude deleterious effects. Investigations on starch molecular structure revealed significant increase in starch phosphate and amylose content in HP and AO respectively with obvious differences in starch granule morphology at maturity. The results demonstrate that decreasing the storage starch branching resulted in metabolic adjustments and re-directions, tuning to evade deleterious effects on caryopsis physiology and plant performance while only little effect was evident by increasing starch-bound phosphate as a result of overexpressing GWD.  相似文献   

16.
17.
Arsenic (As) is a potential contaminant of groundwater as well as soil in many parts of the world. The effects of increasing concentration of As (25 μm and 50 μm As2O3) in the medium on the content of starch and sugars and activity levels of enzymes involved in starch and sugar metabolism i.e. α-amylase, β-amylase, starch phosphorylase and acid invertase were studied in germinating seeds of two rice cvs. Malviya-36 and Pant-12 during 0–120 h period. As toxicity in situ led to a marked decline in the activities of α-amylase, β-amylase in endosperms as well as embryoaxes of germinating rice seeds. The activity of acid invertase increased in endosperms as well as embryoaxes whereas starch phosphorylase activity declined in endosperms but increased in embryoaxes under As treatment. In endosperms a decline in starch mobilization was observed under As toxicity, however under similar conditions the content of total soluble sugars increased in embryoaxes. The observed inhibition in activities of amylolytic enzymes might contribute to delayed mobilization of endospermic starch which could affect germination of seeds in As polluted environment, while the induced acid invertase activity and increased sugar accumulation in embryoaxes could serve as a possible component for adaptation mechanism of rice seedlings grown under As containing medium.  相似文献   

18.
Endogenous gibberellin-like activity was determined in dry pea seeds (Pisum sativum cv. Bördi), in cotyledons and axes of germinating pea seeds and also in excised cotyledons and axes. During the first two days of pea seed germination, neither the embryonic axes nor the cotyledons show a mutual influence on gibberellin activity, but this appears after 72–96 h of germination. The gibberellin-like activity m cotyledons and axes of germinating seeds increased during the same period, but it decreased in isolated axes and excised cotyledons.  相似文献   

19.
The residual starches of germinating wheat and barley grains show similar structural changes. Germinating wheat grains produce malto-oligosaccharides and dextrins. The starch of wrinkled-seeded peas showed some structural changes during germination, but the starch from senescing tobacco leaves showed none. Neither peas nor tobacco produced malto-oligosaccharides or dextrins at any stage. Wrinkled-seeded peas showed some differences to smooth-seeded peas in enzyme content, and starch was probably degraded by phosphorylase initially with α-amylase acting after 3 days. In senescing tobacco leaves the only significant enzyme activities were α-amylase and maltase. Wheat closely resembled barley in showing amylolytic breakdown.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号