首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbohydrate metabolism in growing rice seedlings under arsenic toxicity   总被引:7,自引:0,他引:7  
We studied in the seedlings of two rice cultivars (Malviya-36 and Pant-12) the effect of increasing levels of arsenic in situ on the content of sugars and the activity of several enzymes of starch and sucrose metabolism: alpha-amylase (EC 3.2.1.1), beta-amylase (EC 3.2.1.2), starch phosphorylase (EC 2.4.1.1), acid invertase (EC 3.2.1.26), sucrose synthase (EC 2.4.1.13) and sucrose phosphate synthase (EC 2.4.1.14). During a growth period of 10-20 d As2O3 at 25 and 50 microM in the growth medium caused an increase in reducing, non-reducing and total soluble sugars. An increased conversion of non-reducing to reducing sugars was observed concomitant with As toxicity. The activities of alpha-amylase, beta-amylase and sucrose phosphate synthase declined, whereas starch phosphorylase, acid invertase and sucrose synthase were found to be elevated. Results indicate that in rice seedlings arsenic toxicity causes perturbations in carbohydrate metabolism leading to the accumulation of soluble sugars by altering enzyme activity. Sucrose synthase possibly plays a positive role in synthesis of sucrose under As-toxicity.  相似文献   

2.
Rice seedlings (Oryza sativa L.) were incubated at 5-30 degrees C for 48 h and the effect of temperature on ethanolic fermentation in the seedlings was investigated in terms of low-temperature adaptation. Activities of alcohol dehydrogenase (ADH, EC 1.1.1.1) and pyruvate decarboxylase (PDC, EC 4.1.1.1) in roots and shoots of the seedlings were low at temperatures of 20-30 degrees C, whereas temperatures of 5, 7.5 and 10 degrees C significantly increased ADH and PDC activities in the roots and shoots. Temperatures of 5-10 degrees C also increased ethanol concentrations in the roots and shoots. The ethanol concentrations in the roots and shoots at 7.5 degrees C were 16- and 12-times greater than those in the roots and shoots at 25 degrees C, respectively. These results indicate that low temperatures (5-10 degrees C) induced ethanolic fermentation in the roots and shoots of the seedlings. Ethanol is known to prevent lipid degradation in plant membrane, and increased membrane-lipid fluidization. In addition, an ADH inhibitor, 4-methylpyrazole, decreased low-temperature tolerance in roots and shoots of rice seedlings and this reduction in the tolerance was recovered by exogenous applied ethanol. Therefore, production of ethanol by ethanolic fermentation may lead to low-temperature adaptation in rice plants by altering the physical properties of membrane lipids.  相似文献   

3.
Nitrate reductase (NR) activity in the presence of Mg2+ (NR act) representing the non-phosphorylated NR state and the activity in the presence of EDTA (NR max) representing maximum NR activity was measured in roots and shoots of 15 d grown aluminium and water stressed rice seedlings to examine changes in NR activation state due to these stresses. Seedlings subjected to a moderate water stress level of -0.5 MPa for 24 h or grown in presence of 80 microM Al3+showed decreased level of NR max but resulted in higher NR act and NR activation state. However, seedlings grown in presence of a higher level of 160 microM Al3+ showed a decline in NR act as well as NR max. With a higher water stress Level of -2.0MPa a marked decline in the levels of both NR act and NR max was observed, whereas NR activation state remained almost unaltered with severe water stress. NR activity appeared to be sensitive to H2O2, PEG-6000, NaCl and various metal salts. Incorporation of these components in the enzyme assay medium led to decreased affinity of enzyme towards its substrate with increase in Km and decrease in Vmax values. Addition of each of the osmolytes i.e. 1 mol/L proline, 1 mol/L glycine betaine or 1 mol/L sucrose in the enzyme assay medium caused a considerable protection to the enzyme against the damaging effects of stressful components. An enhanced level of proline and glycine betaine was observed in Al-stressed seedlings and sucrose in Al as well as water stressed seedlings. Results suggest that Al toxicity and water stress decrease total amount of functional NR in rice seedlings and the osmolytes proline, glycine betaine and sucrose appear to have a direct protective action on enzyme NR under stressful conditions  相似文献   

4.
Male reproductive development of rice (Oryza sativa L.) is very sensitive to drought. A brief, transitory episode of water stress during meiosis in pollen mother cells of rice grown under controlled environmental conditions induced pollen sterility. Anthers containing sterile pollen were smaller, thinner, and often deformed compared to normal anthers of well-watered plants. Only about 20% of the fully developed florets in stressed plants produced grains, compared to 90% in well-watered controls. Water stress treatments after meiosis were progressively less damaging. Levels of starch and sugars and activities of key enzymes involved in sucrose cleavage and starch synthesis were analyzed in anthers collected at various developmental stages from plants briefly stressed during meiosis and then re-watered. Normal starch accumulation during pollen development was strongly inhibited in stress-affected anthers. During the period of stress, both reducing and non-reducing sugars accumulated in anthers. After the relief of stress, reducing sugar levels fell somewhat below those in controls, but levels of non-reducing sugars remained higher than in controls. Activities of acid invertase and soluble starch synthase in stressed anthers were lower than in controls at comparable stages throughout development, during as well as after stress. Stress had no immediate effect on ADP-glucose pyrophosphorylase activity, but had an inhibitory aftereffect throughout post-stress development. Sucrose synthase activity, which was, relatively speaking, much lower than acid invertase activity, was only slightly suppressed by stress. The results show that it is unlikely that pollen sterility, or the attendant inhibition of starch accumulation, in water-stressed rice plants are caused by carbohydrate starvation per se. Instead, an impairment of enzymes of sugar metabolism and starch synthesis may be among the potential causes of this failure.  相似文献   

5.
Effects of ethanol, the end product of ethanolic fermentation, on the growth of rice (Oryza sativa L.) seedlings were determined as a means of evaluating growth responses under anoxia. The ethanol concentrations in roots and coleoptiles of the seedlings subjected to 48 h-anoxia, and in their culture medium were 23 and 32 µmol g–1 fresh weight, and 19 µmol ml–1, respectively. The growth of the roots and coleoptiles of the seedlings was restricted by exogenous ethanol at concentrations above 50 mM and 100 mM, respectively, suggesting that the roots are more sensitive to ethanol than the coleoptiles.  相似文献   

6.
Summary Aluminum toxicity is an important growth limiting factor for upland rice production on oxisols of cerrado region in Brazil. Data related to the effect of Al on uptake of nutrients for rice crop are limited. The effect of five Al concentrations (0, 10, 20, 40 and 60 ppm) in culture solution on the chemical composition of 30 upland rice cultivars was studied.Aluminum concentration and content in plant tissues were increased with higher levels of Al in all cultivar. In the roots Al content was higher as compared with the tops. Critical toxic level of Al in the tops of 21 days old plants varied from 100 to 417 ppm depending on the cultivars. Rice cultivars responded differently to Al treatments with respect to nutrients uptake. Increased Al concentrations in the solution exerted an inhibiting effect on the concentrations and contents of N, P, K, Ca, Mg, S, Na, Zn, Fe, Mn, B and Cu. Thus the inhibition was more effective for macronutrients in the plant tops in following order: Mg>Ca>P>K>N>S>Na. Whereas for micronutrients it was in the order of Mn>Zn>Fe>Cu>B. Morphological, physiological and biochemical effects of Al, toxicity responsible for the reduction in plant nutrient uptake, are discussed.  相似文献   

7.
Summary Five mutant lines of rice with increased amylose content in starch granules were identified among floury endosperm mutants. The amylose contents of the mutants ranged from 29.4% to 35.4% and were about twice as high as that of the normal counterpart. Starch properties of the high amylose mutants were analyzed by column chromatography, X-ray diffractometry, photopastegraphy and scanning electron microscopy. The high amylose mutants produced longer unit chains of amylopectin than those of the normal counterpart as well as an increased amount of amylose. A X-ray diffractogram of starch in the mutant was characterized by a type B pattern, while that in the normal counterpart showed a type A pattern which is typical for starches of common cereals. The temperatures at the initiation of gelatinization of the mutants were much higher than that for the normal counterpart. The endosperm cells of the mutant were loosely packed with irregular round-shaped starch granules, whereas those of the normal counterpart were densely packed with polyhedral starch granules. Judging from the results obtained, it was concluded that starch properties of the high amylose mutants of rice were similar to those of the amylose-extender (ae) mutant of maize.  相似文献   

8.
Changes in protein and amino acid contents in Cd-treated rice (Oryza sativa L.) seedlings of two cultivars were investigated. By assessing the decrease in chlorophyll content in the second leaves as an indicator of Cd toxicity, it was seen that cv. Tainung 67 (TNG 67) seedlings were apparently more tolerant to Cd than cv. Taichung Native 1 (TN 1). Following treatment with CdCl2, protein content decreased with a progressive and substantial increase of protease activity and total amino acids in TN 1, but not in TNG 67. The patterns of individual amino acids in Cd-treated leaves of both cultivars were examined and, only in cv. TN 1 a substantial increase in the content of all amino acids analysed, except for methione, was recorded. The role of these changes in endogenous amino acids in Cd toxicity of TN 1 leaves is discussed.  相似文献   

9.
The effects of NaCl on changes in ammonium level and enzyme activities of ammonium assimilation in roots growth of rice (Oryza sativa L.) seedlings were investigated. NaCl was effective in inhibiting root growth and stimulated the accumulation of ammonium in roots. Accumulation of ammonium in roots preceded inhibition of root growth caused by NaCl. Both effects caused by NaCl are reversible. Exogenous ammonium chloride and methionine sulfoximine (MSO), which caused ammonium accumulation in roots, inhibited root growth of rice seedlings. NaCl decreased glutamine synthetase and glutamate synthase activities in roots, but increased glutamate dehydrogenase activity. The growth inhibition of roots by NaCl or MSO could be reversed by the addition of L-glutamic acid or L-glutamine. The current results suggest that disturbance of ammonium assimilation in roots may be involved in regulating root growth reduction caused by NaCl.Abbreviations GDH glutamate dehydrogenase - GOGAT glutamate synthase - GS glutamine synthetase - MSO methionine sulfoximine  相似文献   

10.
The effect of AlCl3 on endosperm reserve mobilization of rice grains or dehulled rice grains during germination was investigated. AlCl3 had no effect on grain fresh and dry masses, protein and starch contents, and α-amylase and protease activities in endosperm of germinating rice grains. However, when dehulled rice grains were treated with AlCl3, AlCl3 inhibited the decrease in fresh mass, dry mass, and starch and protein contents, and the increase in α-amylase and protease activities in endosperm. Evidence is provided to show that the hull is a barrier against influx of Al to endosperm.This work was supported by the National Science Council of the Republic of China, grant NSC92-2313-B-002-001.  相似文献   

11.
Arsenic (As) is a potential contaminant of groundwater as well as soil in many parts of the world. The effects of increasing concentration of As (25 μm and 50 μm As2O3) in the medium on the content of starch and sugars and activity levels of enzymes involved in starch and sugar metabolism i.e. α-amylase, β-amylase, starch phosphorylase and acid invertase were studied in germinating seeds of two rice cvs. Malviya-36 and Pant-12 during 0–120 h period. As toxicity in situ led to a marked decline in the activities of α-amylase, β-amylase in endosperms as well as embryoaxes of germinating rice seeds. The activity of acid invertase increased in endosperms as well as embryoaxes whereas starch phosphorylase activity declined in endosperms but increased in embryoaxes under As treatment. In endosperms a decline in starch mobilization was observed under As toxicity, however under similar conditions the content of total soluble sugars increased in embryoaxes. The observed inhibition in activities of amylolytic enzymes might contribute to delayed mobilization of endospermic starch which could affect germination of seeds in As polluted environment, while the induced acid invertase activity and increased sugar accumulation in embryoaxes could serve as a possible component for adaptation mechanism of rice seedlings grown under As containing medium.  相似文献   

12.
13.
14.
Using an isogenic line of rice having lazy gene (la), we studied the correlation between the agravitropic response at the young seedling stage and the lazy habit (prostrate growth of tillers) at the more advanced stage of growth. In this study, it was found that both agravitropism and lazy habit were controlled by the single recessivela gene. That is, F2 segregants of Kamenoo×lazy-Kamenoo, which had an agravitropic response at their young seedling stage, showed a lazy habit of growth in the more advanced stage of vegetative growth. On the other hand, seedlings that showed normal gravitropic curvature at their early stage of growth had an upright growth in the mature stage.  相似文献   

15.
Jiang H  Dian W  Wu P 《Phytochemistry》2003,63(1):53-59
Rice (Oryza sativa L.) grain quality is affected by the environmental temperature it experiences. To investigate the physiological molecular mechanisms of the effect of high temperatures on rice grain, a non-waxy indica rice was grown under two temperature conditions, (29/35 degrees C) and (22/28 degrees C), during the ripening stage in two phytotrons. The activities and gene expression of key enzymes for the biosynthesis of amylose and amylopectin were examined. The activity and expression levels of soluble endosperm starch synthase I were higher at 29/35 degrees C than that at 22/28 degrees C. In contrast, the activities and expression levels of the rice branching enzyme1, the branching enzyme3 and the granule bound starch synthase of the endosperm were lower at 29/35 degrees C than those at 22/28 degrees C. These results suggest that the decreased activity of starch branching enzyme reduces the branching frequency of the branches of amylopectin, which results in the increased amount of long chains of amylopectin of endosperm in rice grain at high temperature.  相似文献   

16.
Climatic and soil factors are limiting rice growth in many countries. In Vietnam, a steep gradient of temperature is observed from the North to the South, and acid sulphate soils are frequently devoted to rice production. We have therefore attempted to understand how temperature affects rice growth in these problem soils, by comparison with rice grown in nutrient solution. Two varieties of rice, IR64 and X2, were cultivated in phytotrons at 19/21°C and 28/32°C (day/night) for 56 days, after 3 weeks preculture in optimal conditions. Two soils from the Mekong Delta were tested. Parallel with the growing experiments, these two soils were incubated in order to monitor redox potential (E h ), pH, soluble Al and Fe, soluble, and available P. Tillering retardation at 20°C compared to 30°C was similar in nutrient solutions and in soils. The effect of temperature on increasing plant biomass was more marked in solutions than in soils. The P concentrations in roots and shoots were higher at 20°C than at 30°C, to such an extent that detrimental effect was suspected in plants grown in solution at the lowest temperature. The translocation of Fe from roots to shoots was stimulated upon rising temperature, both in solutions and in soils. This led to plant death on the most acid soil at 30°C. Indeed, the accumulation of Fe in plants grown on soils was enhanced by the release of Fe2+ due to reduction of Fe(III)-oxihydroxides. Severe reducing conditions were created at 30°C: redox potential (E h ) dropped rapidly down to about 0 V. At 20°C, E h did not drop below about 0.2 V, which is a value well in the range of Fe(III)/Fe(II) buffering. Parallel to E h drop, pH increased up to about 6–6.5 at 30°C, which prevented plants from Al toxicity, even in the most acid soil. Phosphate behavior was obviously related to Fe-dynamics: more reducing conditions at 30°C have resulted in enhancement of available P, especially in the most acid soil.  相似文献   

17.
Drought and salinity are the major abiotic factors limiting productivityin rice (Oryza sativa L.). Although both generate osmoticstress, ion toxicity is an additional and important component of salinity. Tostudy the morphological and anatomical responses to those types of stress, weused in vitro grown rice seedlings. Based on an initialscreening of several non-penetrating osmotica on seedling growth, we selectedsorbitol to compare its osmotic effects during seedling development with thosegenerated by NaCl stress. At comparable levels of osmolality, the reduction inroot and leaf growth as well as their delayed development were similar for bothsaline- and osmotically-generated stress. Some changes observed in root anatomyand most of the variations in leaf anatomy features caused by the treatmentscould be ascribed to osmotic stress. However, there were evident differences inthe morphology of the root system as well as in chlorophyll levels as afunctionof the stress treatment. Furthermore, the larger size of epidermal andbulliformcells was distinctively related to saline stress. The results obtained providetools for the in vitro identification of either specificorcross-tolerant phenotypes.  相似文献   

18.
Summary The need to compare pressure-chamber estimates of leaf water potential with a psychrometric method has been established for several crop species. We investigated this relationship for rice (Oryza sativa L.) as well as the need to protect leaves from water loss during sampling and measuring period in the pressure chamber. Two rice cultivars grown in containers on a clay-loam soil were stressed to varying degrees by withholding water. Fully expanded leaves were sampled for estimation of leaf water potential by the dew point hygrometer and pressure-chamber techniques. The same leaf was used in both methods allowing direct comparison. Additionally, two alternative methods of leaf handling for measurement by the pressure chamber technique were compared. Protection of leaf samples against water loss during excision, transport and handling was found to be more important at higher leaf water potentials (>−1.0 MPa). The two cultivars used appeared to differ in their response to protection of the leaf sample. These results serve to further caution pressure chamber users on extrapolating comparisons between the two measurement methods and between tissue handling techniques even within a crop species.  相似文献   

19.
A rice mutant,G069, characteristic of few tiller numbers, was found in anther culture progeny from theF 1 hybrid between anindica-japonica cross, Gui630×02428. The mutant has another two major features: delayed tillering development and yellowing apex and margin on the mature leaves. As a donor parent,G069 was further backcrossed with the recurrent parent,02428, for two turns to develop aBC 2F2 population. Genetic analysis in theBC 2F2 population showed that the traits of few-tillering and yellowing apex and margin on the mature leaves were controlled by one recessive gene. A pool of equally mixed genomic DNA, from few-tillering individual plants inBC 2F2, was constructed to screen polymorphism with simple sequence repeat (SSR) markers in comparison with the02428 genome. One SSR marker and three restriction fragment length polymorphism (RFLP) markers were found possibly linked with the recessive gene. By using these markers, the gene of few-tillering was mapped on chromosome 2 between RFLP marker C424 and S13984 with a genetic distance of 2.4 cM and 0.6 cM, respectively. The gene is designatedft1.  相似文献   

20.
The role of endogenous polyamines in the control of NaCl-inhibited growth of rice seedlings was investigated. Putrescine, spermidine and spermine were all present in shoots and roots of rice seedlings. NaCl treatment did not affect spermine levels in shoots and roots. Spermidine levels in shoots and roots were increased with increasing concentrations of applied NaCl. NaCl at a concentration of 50 mM, which caused only slight growth inhibition, drastically lowered the level of putrescine in shoots and roots. Addition of precursors of putrescine biosynthesis (L-arginine and L-ornithine) resulted in an increase in putrescine levels in NaCl-treated shoots and roots, but did not allow recovery of the growth inhibition of rice seedlings induced by NaCl. Pretreatment of rice seeds with putrescine caused an increase in putrescine level in shoots, but could not alleviate the inhibition effect of NaCl on seedling growth. The current results suggest that endogenous polyamines may not play a significant role in the control of NaCl-inhibited growth of rice seedlings.Abbreviations PUT putrescine - SPD spermidine - SPM spermine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号