首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interspecific somatic hybrids have been prepared by fusion of human epidermal cells with mouse fibroblasts 3T3-4E using PEG 4000. Expression of epidermal differentiation antigens (bullous pemphigoid antigens, BP, keratin subsets 55-57 k and 67 k), markers of basal and suprabasal cells, were studied by immunocytochemistry for 10 passages. These markers were detected in the hybrids early after fusion, indicating that cells from both compartments were able to fuse with 3T3-4E cells. However, the hybrids expressing high molecular weight keratins were no longer detected after 7 days in primary cultures and serial passages, whereas those expressing BP antigens and vimentin persisted. Low molecular weight keratins 52 K and 50 K were detected by SDS-PAGE at the second passage in precipitates formed between labeled hybrid lysates and total keratin rabbit antiserum. Karyotype analysis showed mainly murine chromosomes and a submetacentric human chromosome between the 6th and the 10th passage.  相似文献   

2.
The structural gene (beta GALA) coding for lysosomal beta-galactosidase-A (EC 3.2.1.23) has been assigned to human chromosome 3 using man--mouse somatic cell hybrids. Human beta-galactosidase-A was identified in cell hybrids with a species-specific antiserum to human liver beta-galactosidase-A. The antiserum precipitates beta-galactosidase-A from human tissues, cultured cells, and cell hybrids, and recognizes cross-reacting material from a patient with GM1 gangliosidosis. We have analyzed 90 primary man--mouse hybrids derived from 12 separate fusion experiments utilizing cells from 9 individuals. Enzyme segregation analysis excluded all chromosomes for beta GALA assignment except chromosome 3. Concordant segregation of chromosomes and enzymes in 16 cell hybrids demonstrated assignment of beta GALA to chromosome 3; all other chromosomes were excluded. The evidence suggests that GM1 gangliosidosis is a consequence of mutation at this beta GALA locus on chromosome 3.  相似文献   

3.
Cytogenetic analysis of the human HBL-100 cell line, that we have previously shown to harbour SV40 genetic information (Caron de Fromentel et al., 1985), reveals numerous chromosomal rearrangements as soon as the 30th in vitro passage. The karyotype is relatively stable during in vitro maintenance and even at late passages (approximately 70) when the cells have acquired the capacity to form tumors in nude mice. In all the somatic cell hybrids obtained after fusion of mouse 3T3-4E cells with HBL-100 cells, several human chromosomes are maintained and a derivative from chromosome 15-der(15)- is the most frequently observed. The der(15) marker is present in the HBL-100 cell line at every passage studied as well as in different cell lines derived from tumors induced by HBL-100 cells. The various hybrids, originally isolated for a transformed phenotype on the basis of their ability to grow in soft-agar, were all found to express the SV40 T-antigen. In situ hybridization of an SV40 DNA probe to chromosome spreads obtained from one of these hybrids shows that the integration site of the viral genome is located on the der(15) marker chromosome, at band 15q24. The possible cooperation of SV40 T-antigen with some other oncogene(s), required by human HBL-100 cells in order to express a malignant phenotype, is discussed.  相似文献   

4.
A monoclonal antibody, 1D8, which recognizes a cell-surface antigen expressed by human chromosome 3 in Chinese hamster-human somatic-cell hybrids, has been produced. Testing of hybrids containing various deletions of chromosome 3 determines that the gene encoding the antigen is regionally localized to 3q (cen-22). This regional mapping is distinct from that elsewhere reported for two other cell-surface antigens assigned to chromosome 3--namely, the human transferrin receptor and the p97 melanoma-associated antigen. In addition, biochemical characterization is different from that elsewhere reported for other chromosome 3-encoded cell-surface antigens. When tested against a panel of rare-phenotype red blood cells, the only cells that failed to react were those of the Rhnull phenotype. The antibody reacts only weakly with homozygous -D- and fetal red cells, in contrast with a previously described antibody, R6A, which does not react with Rhnull cells. Furthermore, R6A does not recognize a cell-surface antigen expressed by chromosome 3 in Chinese hamster-human somatic-cell hybrids. Thus, the monoclonal antibody 1D8 recognizes a previously undescribed cell-surface antigen encoded by human chromosome 3 and not expressed on Rhnull cells. The gene on chromosome 3 regulating expression of this antigen may be that defective in Rhnull disease or may require the normal allele at an unlinked Rhnull locus for expression. Linkage studies will be required to further elucidate this matter.  相似文献   

5.
Monoclonal antibodies 4F2, A3D8, and A1G3, directed against cell surface antigens present on subsets of human cells, were used to identify the human chromosome regions that code for the antigenic determinants. Human fibroblasts expressed all three antigens, and no cross-reactivity with Chinese hamster or mouse cells was found. Fourteen rodent X human somatic cell hybrids, derived from six different human donors and from two different Chinese hamster and one mouse cell line, were studied simultaneously for human chromosome content and for antibody binding as detected by indirect immunofluorescence. Concordancy with binding of all three antibodies was observed only for human chromosome 11. All other chromosomes were excluded by three or more discordant hybrid clones. Data from six hybrids containing three different regions of chromosome 11 indicate that it is the long arm of chromosome 11 which is both necessary and sufficient for expression of the human antigen defined by 4F2 while the antigen(s) defined by A3D8 and A1G3 map to short arm.  相似文献   

6.
Somatic hybrids realized between mouse fibroblasts 3T3.4E and normal human keratinocytes or hand wart keratinocytes were examined from the 6th to the 30th passages by scanning and transmission electron microscopy. Whatever the passage, hybrid cells showed a fibroblastic morphology but, as keratinocytes, they had the capability to stratify. Branched mitochrondria were observed in hybrids whereas normal mitochondria were present in mouse fibroblasts. In human keratinocytes, most of the mitochondria were normal but sometimes few of them were branched. In wart hybrids heterogeneous nucleoli were detected instead of normal nucleoli in normal keratinocyte hybrids, 3T3.4E cells and human keratinocytes.  相似文献   

7.
Human-mouse somatic cell hybrids were made between adenine phosphoribosyltransferase-deficient mouse L cells and a strain of human primary fibroblasts and selected in medium containing alanosine and adenine (J. A. Tischfield and F. H. Ruddle, Proc. Natl. Acad. Sci. U.S.A. 71:45-49, 1974). These hybrids were tested for the generation of defective interfering (DI) particles of vesicular stomatitis virus to determine whether or not a host gene controls the induction of DI particles. None of the seven independently arising hybrid clones tested generated detectable DI particles during 13 successive undiluted passages. In addition, the parental human cells also failed to generate DI particles. In contrast, the parental mouse cells generated a detectable level of DI particles during continuous passage. Thus, failure to generate DI particles appears to act in a dominant fashion in these hybrids. Human chromosome 16 and adenine phosphoribosyltransferase were present, as a direct consequence of the selection system, in all of the hybrid clones that failed to generate DI particles. It was the only human chromosome observed in the cells of every hybrid clone. This was verified by both isozyme and karyotype analyses. After hybrids were back-selected (with 2,6-diaminopurine) for loss of human adenine phosphoribosyltransferase and chromosome 16, they gained the ability to generate DI particles. Replication of DI particles already present in virus stocks, however, was normal in all of the hybrid clones and the parental human cells. This suggests that the induction, but not the replication, of DI particles is affected by the human genome and that a factor on human chromosome 16 seems to selectively suppress the mouse cell's ability to generate DI particles in the hybrids. These results support the idea that the induction of DI particles is controlled in part by host cell function(s), as suggested previously (C. Y. Kang and R. Allen, J. Virol. 25:202-206, 1978).  相似文献   

8.
Chromosome 3q (22-ter) encodes the human transferrin receptor   总被引:9,自引:5,他引:4       下载免费PDF全文
The human transferrin receptor is an integral membrane glycoprotein of 180,000 molecular weight (mol. wt.) formed from two subunits of 90,000 mol. wt. A clone panel of Chinese hamster-human somatic cell hybrids was screened using a single cell plating cytotoxicity assay and rabbit antiserum raised to purified human transferrin receptor. Chromosome 3 displayed the highest rate of concordance with the presence of human transferrin receptor, as assayed by cytotoxicity. Antitransferrin receptor serum-resistant segregants of chromosome 3 positive, receptor-positive hybrids were selected, using antiserum and complement. The segregants consistently lost chromosome 3. 125I human transferrin binding studies confirmed synteny between the functional human transferrin receptor and chromosome 3. Examination of hybrids with either translocated or deleted chromosome 3's allows regional mapping to 3q(22-ter).  相似文献   

9.
S Brown  H K Oie  A F Gazdar  J D Minna  U Francke 《Cell》1979,18(1):135-143
The replication pattern of the endogenous baboon type C virus M7 was studied in 29 primary Chinese hamster × human hybrid clones generated with leukemic cells from two different patients with acute lymphoblastic or myeloblastic leukemia. There was no evidence of viral particulate RDDP or M7 antigen before viral infection. M7 virus replicated in human and some hybrid cells but not in Chinese hamster cells, indicating that M7 requires dominantly expressed human gene(s) for replication. Enzyme and cytogenetic analyses show that a gene(s) coded for by human chromosome 19 is necessary for M7 infection of these hybrids. Detailed cytogenetic correlations revealed, however, that the chromosome 19+/M7 + hybrid clones with intact chromosomes also had copies of chromosomes 3 and 6. Previously, Bevi, the putative integration site for M7 virus, has been assigned to human chromosome 6. Many clones with various combinations of chromosomes 3 and 6 lacked chromosome 19, however, and failed to replicate exogenously applied M7 virus, while tests of 27 secondary clones showed that M7 markers co-segregated with chromosome 19 markers. These findings all confirm the need for a chromosome 19-coded function in Chinese hamster × human hybrids. In addition, the yield of viral particulate RDDP produced into the culture fluid was 50–100 fold less per viral antigen-positive cell in the hybrids compared with human cells. Thus some form of regulation of viral components exists in the hybrid cells. When the virus replicating in hybrid cells was transferred back to human cells, this regulation was relaxed and the yield of RDDP per FA(+) cell greatly increased. We conclude that human chromosomes 6 and 19 code for functions involved in M7 virus metabolism, and we cannot exclude a function coded for by chromosome 3.  相似文献   

10.
Different populations of unstimulated and IL-2-activated PBL were used in binding and killing assays against somatic mouse/human lymphocyte cell hybrids containing different human chromosomes. Unstimulated PBL effector cells showed low binding and killing activity to both cell hybrids and mouse parental cell lines. However, IL-2-activated killer (LAK) cells bound strongly to, and effectively killed, cell hybrids carrying human chromosome 6, but were inefficient in both assays to mouse parental cells and to cell hybrids not carrying human chromosome 6. These results show that human LAK cells but not endogenous NK cells bind and kill mouse/human lymphocyte hybrids containing human chromosome 6. We thus suggest that LAK cells recognize ligands encoded by genes on chromosome 6.  相似文献   

11.
Chemotherapeutic treatment of tumor cells leads either to tumor cell death (usually by apoptosis) or to the formation of drug-resistant subpopulations. Known mechanisms of cancer cell drug resistance include gene amplification and increased expression of drug transporters. On the other hand, normal cells survive many forms of chemotherapy with minimal damage probably because of their capacity for growth arrest and stringent control of apoptosis. Microcell hybrids between B78 (murine melanoma) and HSF5 (normal human fibroblasts) were analyzed to identify a new human chromosomal region involved in the promotion of drug-induced growth arrest and suppression of apoptosis. In these hybrids, the presence of human chromosome 3 was strongly associated with suppression of apoptosis via G1 and G2 growth arrest during exposure to the antimetabolite N-phosphonoacetyl-L-aspartate (PALA), suggesting that a gene(s) on chromosome 3 serves an antiproliferative role in a drug-responsive growth arrest pathway.  相似文献   

12.
Our previous studies using rodent/human somatic-cell hybrids suggested that the expression of human mitochondrial glycerol-3-phosphate dehydrogenase (GPDM) is dependent on the presence of human mitochondria. This has now been tested directly by analysis of GPDM activity in a series of nine hybrid-cell lines, four segregating human chromosomes and five losing rodent chromosomes (reverse segregants). The chromosome composition of the hybrids was deduced from analysis of biochemical markers and examination of G- and G11-banded metaphase spreads and the mitochondrial content was determined by Southern blot analysis, using cloned mouse and human mtDNA sequences as probes. We found that the mtDNA species present in these hybrids correlated exactly with the pattern of chromosome segregation such that the conventional hybrids contained rodent mtDNA and the reverse segregants human mtDNA. However, the pattern of GPDM expression was not directly correlated with the species of chromosomes or mitochondria present: all the hybrids showed strong rodem GPDM activity and two from each class of hybrid also showed human GPDM activity but the other hybrids were negative for human GPDM. We conclude that rodent GPDM readily integrates into human mitochondria, that the expression of rodent GPDM is not dependent on the presence of rodent mitochondria, and that GPDM is not coded by mtDNA. Human GPDM either is not capable of being inserted into the rodent mitochondrial membrane or is regulated in some way in the hybrid cells by an unidentified rodent factor.  相似文献   

13.
We searched for a human chromosome that would restore the cholesterol metabolism in 3T3 cell lines (SPM-3T3) derived from homozygous sphingomyelinosis mice (spm/spm). Mouse A9 cells containing a single copy of pSV2neo-tagged chromosomes 9, 11, or 18 derived from normal human fibroblasts served as donor cells for transfer of human chromosomes. Purified A9 microcells were fused with SPM-3T3 cells, and the microcell hybrids were selected in medium containing G418 antibiotics. The microcell hybrids that contained human chromosomes 9, 11, or 18 in a majority of cells were examined. The accumulation of intracellular cholesterol in the microcell hybrids containing a chromosome 18 decreased markedly, whereas in the microcell hybrids containing either chromosomes 9 or 11 it was similar to that in SPM3T3 cells. The SPM-3T3 cells with an intact chromosome 18 were further passaged and subcloned. Clones which again accumulated intracellular cholesterol had concurrently lost the introduced chromosome 18. The abnormal accumulation was associated with a decrement in the esterification of exogenous cholesterol. These findings suggest that the gene responsible for the abnormal cholesterol metabolism in the spm/spm mice can be restored by a hu man chromosome 18. The gene was tentatively mapped on 18pter18p11.3 or 18q21.3qter that was lost during subcloning, thereby resulting in reaccumulation of the intracellular cholesterol.  相似文献   

14.
Eight single-copy DNA probes specific for human chromosome 3 were isolated by screening a human chromosome 3-derived genomic library. Southern blot analyses of DNAs isolated from a panel of somatic cell hybrids allowed us to regionally assign all probes to subregions on chromosome 3. Three clones were localized to the short arm of chromosome 3 (3p21----pter), two to the long arm (3q21----qter), and three to the 3q21----3p21 subregion. Six of these DNA sequences map to regions overlapping a segment of chromosome 3 (3p14----p23) frequently deleted in small cell lung cancer cells. Restriction fragment length polymorphism analyses indicate that at least three of the eight single-copy probes studies show MspI or BglII polymorphisms. This library is a useful source of chromosome 3-specific probes.  相似文献   

15.
N D Wang  J R Testa  D I Smith 《Genomics》1992,14(4):891-896
Using the human/hamster cell line UCTP2A-3, we have generated and isolated three hybrids, each containing a novel human chromosome 3p break. All chromosome 3 materials distal to the breaks were lost. Two of the breakpoints were produced using aphidicolin induction; the third breakpoint occurred spontaneously. The aphidicolin-induced breaks were localized to 3p21.1 in hybrid AR1 and to p14.1 in hybrid AR2. The spontaneous break was localized to 3p11 in hybrid 2A-3-1. These hybrids were used to sublocalize 18 chromosome 3 probes further to five regions within 3cen-p21.1. The new hybrids and sublocalized markers will be useful in the study and characterization of the 3p11, 3p14.1, and 3p21.1 segments of chromosome 3.  相似文献   

16.
Somatic cell hybrids between Chinese hamster (CH) lung cells (V79/380-6), nonpermissive for productive infection by herpes simplex type 1 (HSV-1), and permissive human diploid cells support productive HSV-1 infection as long as they retain human chromosome 11. Human chromosome 3 has been reported to complement nonpermissivity in (CH) Don cells (1). Intraspecies hybrids between Don/a3 and V79/380-6 cells, however, did not support HSV-1 replication, indicating lack of complementation. The block in both nonpermissive CH cell lines was determined to involve a step beyond replication of the parental viral DNA. In cell hybrids between nonpermissive Don/a23 cells and human fibroblasts containing a t(11;15) (p11;p12) translocation, HSV-1 production was dependent solely on the presence of either human chromosome 11 or the der(11) (p11 leads to qter) translocation product containing the long arm of chromosome 11. Chromosome 3 was excluded by a discordancy rate of 59%. We conclude that the long arm of human chromosome 11 carries one or more genes coding for host functions necessary for the production of progeny HSV-1 DNA.  相似文献   

17.
Mouse/human somatic cell hybrids constitute a valuable resource for both genetic and physical mapping. In this report, we describe the production and characterization of a series of six monochromosomal hybrids generated by fusion of murine microcells with intact human recipient cells. The presence of each mouse chromosome was characterized by PCR analysis and the integrity of the mouse chromosome retained in the hybrids confirmed by fluorescence in situ hybridization (FISH) analysis. Received: 22 August 1996 / Accepted: 19 September 1996  相似文献   

18.
The Chinese hamster ovary (CHO-K1) cell mutant XRS-6 is defective in rejoining of DNA double-strand breaks and is hypersensitive to X-rays, γ-rays, and bleomycin. Radiation resistance or sensitivity of somatic cell hybrids constructed from the fusion of XRS-6 cells with primary human fibroblasts strongly correlated with the retention of human chromosome 2 isozyme and molecular markers. Discordancies between some chromosome 2 markers and the radiation resistance phenotype in some of the hybrid cells suggested the location of the X-ray repair cross complementing 5 (XRCC5) gene on the p arm of chromosome 2. Introduction of human chromosome 2 by microcell-mediated chromosome transfer into the radiation-sensitive XRS-6 cells resulted in hybrid cells in which the radiation sensitivity was complemented. The chromosome 2p origin of the complementing human DNA in the microcell hybrids was supported by fluorescent in situ hybridization analysis of human metaphases using human DNA amplified from the hybrids by inter-Alu-PCR as chromosome-painting probes. XRCC5 is therefore provisionally assigned to human chromosome 2p.  相似文献   

19.
Previous studies on human cell hybrids between HeLa and normal human fibroblasts have indicated that the tumorigenicy may be controlled by a putative tumor suppressor gene on chromosome 11. We previously demonstrated a twofold increase in glucose uptake with a reduced Km by tumorigenic HeLa cell hybrids which expressed a highly glycosylated GLUT1. In this study, we reported that a tumorigenic cell hybrid, CGL4, also expressed a glucose transporter isoform, GLUT3, that was undetectable in nontumorigenic CGL1 cells. The expression of GLUT3 together with GLUT1 of 70 kDa was also evident in three gamma-ray-induced tumorigenic clones isolated from CGL1 cells, while control nontumorigenic irradiated cells expressed 50 kDa GLUT1 alone. In accordance with this, GLUT3 mRNA was specifically expressed in tumorigenic cell hybrids. To examine the role of GLUT3, clones which stably overexpress GLUT3 were developed from both CGL1 and CGL4 cells. In these transfectants, the affinity for 2-deoxyglucose markedly increased, in parallel with the amount of expressed GLUT3 irrespective of its N-glycosylation state. These results suggest that the enhanced GLUT3 expression in HeLa cell hybrids associated with the tumorigenic phenotypes may account for the increased affinity for 2-deoxyglucose. Possible roles of the putative tumor suppressor in control of gene expression and glucose uptake is discussed.  相似文献   

20.
Expression of the serum albumin gene is extinguished in rat hepatoma microcell hybrids that retain mouse chromosome 1. These data define atrans-dominant extinguisher locus,Tse-2,on mouse chromosome 1. To localize the human TSE2 locus, we prepared and characterized rat/human microcell hybrids that contained either human chromosome 1 or chromosome 2, the genetic homologues of mouse chromosome 1. Rat hepatoma microcell hybrids retaining a derivative human chromosome 1 [der 1 t(1;17)(p34.3;q11.2)] expressed their serum albumin genes at levels similar to those of parental hepatoma cells. In contrast, microcell transfer of human chromosome 2 into rat hepatoma recipients produced karyotypically heterogeneous collections of hybrid clones, some of which displayed dramatic albumin extinction phenotypes. For example, albumin mRNA levels in several extinguished microcell hybrids were reduced at least 500-fold, similar to albumin mRNA levels in hepatoma × fibroblast whole-cell hybrids. Expression of several other liver genes, including α1-antitrypsin, aldolase B, alcohol dehydrogenase, and phosphoenolpyruvate carboxykinase, was also affected in some of the microcell hybrids, but expression of these genes was not concordant with expression of albumin. Hybrid segregants were prepared from the albumin-extinguished hybrids, and reexpression of albumin mRNA and protein was observed in sublines that had lost or fragmented human chromosome 2. Finally, expression of mRNAs encoding the liver-enrichedtransactivators HNF-1, HNF-4, HNF-3α, and HNF-3β was not affected in any of the chromosome 2-containing hybrids. These data define and map a genetic locus on human chromosome 2 that extinguishes albumin gene expression intrans,and they suggest that TSE2-mediated extinction is independent of HNF-1, -4, -3α, and -3β expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号