首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dopamine-sensitive adenylate cyclase and 3H-SCH 23390 binding parameters were measured in the rat substantia nigra and striatum 15 days after the injection of 6-hydroxydopamine into the medial forebrain bundle. The activity of nigral dopamine-sensitive adenylate cyclase and the binding of 3H-SCH 23390 to rat nigral D-1 dopamine receptors were markedly decreased after the lesion. On the contrary, 6-hydroxydopamine-induced degeneration of the nigrostriatal dopamine pathway enhanced both adenylate cyclase activity and the density of 3H-SCH 23390 binding sites in striatal membrane preparations. The changes in 3H-SCH 23390 binding found in both nigral and striatal membrane preparations were associated with changes in the total number of binding sites with no modifications in their apparent affinity. The results indicate that: within the substantia nigra a fraction (30%) of D-1 dopamine receptors coupled to the adenylate cyclase is located on cell bodies and/or dendrites of dopaminergic neurons; striatal D-1 dopamine receptors are tonically innervated by nigrostriatal afferent fibers.  相似文献   

2.
The binding of 3H-SCH 23390 was studied in vivo in the mouse brain. The binding was saturable, reversible and stereospecific. The level of nonspecific binding was 5-15% of total binding. Pharmacological characterization revealed binding of 3H-SCH 23390 to D1 receptors. Thus, dopaminergic antagonists known to possess D1 affinity, e.g., SCH 23390 itself, cis-flupentixol and (+)-butaclamol, were potent inhibitors of the 3H-SCH 23390 binding. On the other hand, high doses of D2 selective compounds were required to inhibit the 3H-SCH 23390 binding. These results indicate that 3H-SCH 23390 is a ligand of choice for in vivo studies of D1 receptors.  相似文献   

3.
Chronic treatment with SCH 23390, a selective D-1 dopamine receptor antagonist, elicited a 32% increase in the density of 3H-SCH 23390 binding sites in nigral membrane preparations but failed to change the apparent KD of the ligand for its binding sites. Haloperidol, a D-2 dopamine receptor antagonist which blocks the dopamine-sensitive adenylate cyclase and (-) sulpiride, a selective D-2 dopamine receptor blocker, which does not block the dopamine-sensitive adenylate cyclase, failed to change both the Bmax and KD of 3H-SCH 23390 binding. Finally, the intrastriatal injection of kainic acid produced a marked decrease of both GAD activity and GABA content and 3H-SCH 23390 binding sites (65%) in the homolateral substantia nigra. The results show that in the rat substantia nigra most of the 3H-SCH 23390 binding sites have a presynaptic localization on the striato-nigral GABAergic afferent terminals and suggest that dopamine released from nigral dendrites exerts a tonic influence on these presynaptic D-1 dopamine receptors.  相似文献   

4.
3H-N-methylspiperone (3H-NMSP) was used to label dopamine-2 and serotonin-2 in vivo in the mouse. The striatum/cerebellum binding ratio reached a maximum of 80 eight hours after intravenous administration of 3H-NMSP. The frontal cortex/cerebellum ratio was 5 one hour after injection. The binding of 3H-NMSP was saturable in the frontal cortex and cerebellum between doses of 10 and 1,000 micrograms/kg. Between 0.01 and 10 micrograms/kg the ratio total/nonspecific binding increased from 14 to 21. Inhibition of 3H-NMSP binding in the frontal cortex and striatum by ketanserin, a selective serotonin-2 antagonist, demonstrated that 20% of the total binding in the striatum was to serotonin-2 receptors and 91% of the total binding in the frontal cortex was to serotonin-2 receptors. Compared to 3H-spiperone, 3H-NMSP results in a much higher specific/nonspecific binding ratio in the striatum and frontal cortex and displays more than a two-fold higher brain uptake.  相似文献   

5.
Radiolabeling and in vitro and in vivo evaluation of an iodinated benzazepine: [125I] FISCH 7-Chloro-8-hydroxy-1-(4'-iodophenyl)-3-methyl-2,3,4,5- tetrahydro-1H-3-benzazepine, as a potential imaging agent for CNS D-1 dopamine receptors in animals, were investigated. After an iv injection, this benzazepine derivative showed good brain uptake in rats (2.70, 1.28, 0.48 %dose/whole brain at 2, 15 and 60 min, respectively). The striatum/cerebellum ratio was 2.50 at 60 min after the injection. The regional distribution in rat brain, as measured by ex vivo autoradiography, displayed highest uptake in the regions of the striatal complex and the substantia nigra, regions known to have a high concentration of D-1 dopamine receptors. Furthermore, this localized regional cerebral distribution was blocked by pretreatment with SCH-23390, a selective D-1 dopamine receptor antagonist. The in vitro binding affinity of this agent in rat striatum tissue preparation displayed a Kd of 1.43 +/- 0.15 nM. Competition data (in vitro) showed the following rank order of potency: SCH-23390 greater than (+/-)IBZP much greater than apomorphine greater than WB 4101 greater than ketanserin approximately spiperone. The preliminary data suggest that this analog of SCH-23390 shows similar selectivity for the CNS D-1 receptor.  相似文献   

6.
In developing CNS D1 dopamine receptor-imaging agents with improved specificity and longer brain retention, an iodinated D1 ligand was synthesized. In vitro and in vivo radiolabeling studies of a new iodinated benzazepine, TISCH [7-chloro-8-hydroxy-1-(3'-iodophenyl)-3-methyl-2,3,4,5-tetrahydro-1H-3- benzazepine], an analog of SCH 23390 (7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepin e), were investigated. After an intravenous injection, the R(+) isomer of TISCH showed high brain uptake in rats (2.20 and 0.57% dose per whole brain at 2 and 60 min, respectively). The striatum/cerebellum ratio increased progressively with time (12 at 60 min). Ex vivo autoradiography of rat brain sections, after intravenous injection of R(+)-[125I]TISCH, displayed the highest uptake in striatum and substantia nigra, regions known to have a high concentration of D1 receptors, whereas the S(-) isomer displayed no specific uptake. Furthermore, the specific uptake can be blocked by pretreatment with SCH 23390. In vitro binding studies using the rat striatum tissue preparation showed high specific and low nonspecific bindings (KD = 0.21 +/- 0.03 nM). The rank order of potency exhibiting high specificity to the D1 receptor was SCH 23390 greater than (+/-)-TISCH greater than (+)-butaclamol = (+/-)-FISCH [7-chloro-8-hydroxy-1-(4'-iodophenyl)-3-methyl-2,3,4,5-tetrahydro-1 H-3-benzazepine] much greater than WB4101 = spiperone greater than dopamine, serotonin, (+/-)-propranolol, and naloxone. Imaging studies in a monkey with the resolved isomer, R(+)-[123I]TISCH, demonstrated a high uptake in the basal ganglia and prolonged retention. The preliminary data suggest that R(+)-TISCH is selective for the CNS D1 receptor and is potentially useful for in vivo and in vitro pharmacological studies. When labeled with iodine-123, it may be suitable for noninvasive imaging in humans.  相似文献   

7.
Methods for measuring 3H-SCH 23390 binding and dopamine (DA) stimulated adenylate cyclase (AC) were established in identical tissue preparations and under similar experimental conditions. Pharmacological characterization revealed that both assays involved interaction with the D1 receptor or closely associated sites. In order to investigate whether the binding sites for 3H-SCH 23390 and DA in fact are identical, the antagonistic effects of a variety of pharmacologically active compounds were examined. Surprisingly, the Ki-values obtained from Schild-plot analysis of the antagonism of DA-stimulated AC, were 80-240 times higher than the Ki-values obtained from competition curves of 3H-SCH 23390 binding. Since both assays were performed under identical conditions, the differences in Ki-values indicate the possibility of different binding sites for DA and 3H-SCH 23390 or, that DA and 3H-SCH 23390 label different states of the same receptor.  相似文献   

8.
The binding of [3H]forskolin to a homogeneous population of binding sites in rat striatum was enhanced by NaF, guanine nucleotides and MgCl2. These effects of NaF and guanylylimidodiphosphate (Gpp(NH)p) were synergistic with MgCl2, but NaF and Gpp(NH)p together elicited no greater enhancement of [3H]forskolin binding. These data suggest that [3H]forskolin may label a site which is modulated by the guanine nucleotide regulatory subunit which mediates the stimulation of adenylate cyclase (NS). The D1 dopamine receptor is known to stimulate adenylate cyclase via NS. In rat striatum, the Bmax of [3H]forskolin binding sites in the presence of MgCl2 and NaF was approximately two fold greater than the Bmax of [3H]SCH23390-labeled D1 dopamine receptors. Incubation of striatal homogenates with the protein modifying reagent EEDQ elicited a concentration-dependent decrease in the binding of both [3H]SCH23390 and [3H]forskolin, although EEDQ was approximately 14 fold more potent at inactivating the D1 dopamine receptor. Following in vivo administration of EEDQ there was no significant effect on [3H]forskolin binding sites using a dose of EEDQ that irreversibly inactivated greater than 90% of D1 dopamine receptors. These data suggest that EEDQ is a suitable tool for investigating changes in the stoichiometry of receptors and their second messenger systems.  相似文献   

9.
(+)-2-[123I] A-69024, [(+)-1-(2-[123I] iodo-4,5-dimethoxy-benzyl)-7-hydroxy-6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinoline], is a specific and enantioselective dopamine D1 receptor radioligand. The in vivo biodistribution of this radioligand in rats showed high brain uptake and a distribution consistent with the density of dopamine D1 receptors. Highest uptake was observed in the striatum (0.65 %ID/g) at 5 min followed by clearance. As a measure of specificity the striatum/cerebellar ratio reached a maximum of 3.9 at 30 min post-injection. Radioactivity in the striatum was reduced by 68% by pre-administration of the D1 antagonist SCH 23390. Pre-administration of other dopamine binding drugs, spiperone (D2), 7-OH-DPAT (D3), and clozapine (D4) displayed no inhibitory effect on (+)-2-[123I]A-69024 accumulation in any brain region. Ketanserin (5-HT2/5-HT2C) and haloperidol (D2 receptor antagonist/sigma receptor ligand) also displayed no inhibitory effect in any brain region studied. With the pharmacologically inactive enantiomer, (-)-2-[123I]A-69024, the brain uptake was determined to be non-specific since a striatum/cerebellar ratio of near 1 was observed throughout the time course of the experiment. (+)-2-[123I]A-69024 displays enantioselectivity for dopamine D1 receptors and may deserve further investigation as a possible SPECT radioligand.  相似文献   

10.
A novel benzazepine, SCH 23390, has recently been described as a very potent and selective dopamine D-1 receptor antagonist based on its potent inhibition of dopamine sensitive adenylate cyclase and its selective displacement of 3H-piflutixol from rat striatal receptor sites. In the present study, the in vitro binding of 3H-SCH 23390 to specific striatal receptor sites has been characterized. Binding was saturable and stereospecific, and the results of both saturation and competition studies are consistent with the binding of 3H-SCH 23390 to a single striatal site. A KD of 0.53 nM was obtained through Scatchard analysis. Relative potencies of a variety of neuroleptics in competing with 3H-SCH 23390 nd also 3H-spiperone support an interpretation that the single site to which 3H-SCH 23390 binds is the D-1 dopamine receptor. Also, the binding capacity of 3H-SCH 23390 (69 pmoles/gm wet weight) is in agreement with published values for the binding capacities of 3H-piflutixol and 3H-flupentixol. These data, coupled with the low level of non-specific binding encountered with this radioligand (4–8% of total binding at normally employed ligand concentration of 0.3 nM), its high specific activity and its negligible binding to plastic and glass surfaces make it ideally suited for studying interactions with this receptor.  相似文献   

11.
The pattern of CREB phosphorylation was investigated in the caudate nucleus and hippocampus 10 min or 3 h after i.p. injection of dopamine or NMDA receptor agonists alone, or in combination with antagonists. Ten minutes after C57BL/6 J mice were injected with either the dopamine D1 receptor agonist SKF-38393 hydrobromide or NMDA, immunoreactivity of phosphorylated CREB (pCREB) was significantly increased in all parts of the caudate nucleus but not in hippocampal regions. However, 3 h after the injection of SKF-38393, pCREB levels in the caudate nucleus did not differ significantly from the pCREB levels in control animals, whereas pCREB levels were still elevated 3 h after NMDA injection. Except for the D1 receptor antagonist SCH-23390, which induced CREB phosphorylation in the caudate nucleus, dopamine and NMDA receptor antagonists had little effect on pCREB levels by themselves. However, the NMDA receptor antagonist CGS-19755 injected i.p. blocked both the NMDA- and SKF-38393-induced rise of pCREB levels in the caudate nucleus. Similarly, the D1 receptor antagonist SCH-23390 inhibited the effects produced by SKF-38393 or NMDA. Interestingly, the D2 receptor antagonist sulpiride also blocked the SKF-38393-triggered rise of pCREB. The results demonstrated that NMDA and dopamine receptors modulate pCREB levels in the caudate nucleus and suggest mutual permissive roles for both receptors.  相似文献   

12.
The characteristics of D-1 and D-2 dopamine receptors after acute and subacute cocaine administration were determined in striata and nuclei accumbens from WKY and SHR. In striata from acutely treated rats, significant increases in D-2 receptor density were observed at 30 min, 2 or 24 h following cocaine injection in both strains without changes in affinities. The density of D-1 receptors was significantly decreased 30 min after the injection in WKY, but not in SHR. In striata from subacutely treated rats, the density of D-1 receptors was significantly increased in 3- and 7-day treated WKY, but not in SHR. The affinities of both binding sites remained unchanged. In nuclei accumbens, the changes in both D-1 and D-2 receptors after cocaine administration were similar to those observed in the striatum. The results suggest that cocaine administration alters dopamine receptor binding characteristics. Furthermore, D-1 and D-2 dopamine receptors appear to be differently regulated.  相似文献   

13.
Intrastriatal application of the D1 antagonist SCH 23390 by two procedures, reverse dialysis (20 microM) and local injection (0.45 nmol per striatum), elicited a reduction in acetylcholine (ACh) release superimposable on that induced by systemic administration. The novel selective D1 antagonist SCH 39166 produced a similar decreasing effect on striatal ACh release on local injection (0.45 nmol per striatum). On the other hand, local application of SCH 23390 into the frontal cortices (0.45 nmol per side) failed to alter striatal ACh overflow, indicating that the drug does not diffuse out of its injection site to any significant extent. The dopamine release inducer d-amphetamine (2 mg/kg s.c.) and the dopamine uptake inhibitor cocaine raised ACh release like the D1 agonists. These effects were completely blocked by 10 microM SCH 23390 applied by reverse dialysis. The results suggest that D1 receptors regulating ACh release are located in the striatum.  相似文献   

14.
15.
Beta-adrenergic receptors (beta-AR) are potential targets for antidepressants. Desensitization and downregulation of beta-AR are discussed as possible modes of action for antidepressants. We have investigated the effects of hyperforin and hyperoside, compounds with potentially antidepressant activity from St. John's Wort, on the binding behavior and dynamics of beta2-AR in living rat C6 glioblastoma cells, compared to desipramine (desmethylimipramine; DMI) by means of fluorescence correlation spectroscopy (FCS) and fluorescence microscopy. FCS-binding studies with the fluorescently labeled ligand Alexa532-noradrenaline (Alexa532-NA) binding to beta2-AR of C6 cells showed a significant reduction in total beta2-AR binding after preincubation with hyperforin and hyperoside for 3 days, respectively, which was also found for DMI. This was mainly observed in high-affinity receptor-ligand complexes with hindered lateral mobility (D2 = 1.1 (+/-0.4) microm2/s) in the biomembrane. However, internalization of beta2-AR was found neither in z-scans of these C6 cells nor in HEK 293 cells stably transfected with GFP-tagged beta2-adrenergic receptors (beta2AR-GFP) after incubation up to 6 days with either DMI, hyperforin, or hyperoside. Thus, under these conditions reduction of beta2-AR binding was not mediated by receptor internalization. Additionally, preincubation of C6 cells with DMI, hyperforin, and hyperoside led to a loss of second messenger cAMP after beta2-adrenergic stimulating conditions with terbutaline. Our current results indicate that hyperforin and hyperoside from St. John's Wort, as well as DMI, reduce beta2-adrenergic sensitivity in C6 cells, emphasizing the potential usefulness of St. John's Wort dry extracts in clinical treatment of depressive symptoms.  相似文献   

16.
The effect of neurotensin on binding characteristics of dopamine D1 receptors was examined in the rat striatal membranes through radioreceptor assay. Neurotensin or its analogs were added to incubation medium of[3H]SCH 23390 saturation or dopamine/[3H]SCH 23390 inhibition experimental systems. Neurotensin did not modulate D1 antagonist binding but converted a part of D1 agonist high affinity binding sites to a low affinity state. Neurotensin8–13 had the same potency as neurotensin itself, whereas neurotensin1–8 had only weak activity in modulating D1 agonist binding. GTP and neurotensin had the same effect on D1 agonist binding. However, when both neurotensin and GTP were added, the result was the same as with either alone.

These data suggest that neurotensin modulates the functional state of D1 receptors probably via a GTP binding protein in the rat striatum.  相似文献   


17.
D1 and D2 dopamine receptors were characterized in the caudate-putamen region of nonhuman primate brains (Macaca fascicularis). D1 dopamine receptors were identified with [3H]SCH 23390 and D2 receptors with [3H]-spiperone. Scatchard analysis of [3H]SCH 23390 saturation data using washed membranes revealed a single high-affinity binding site (KD, 0.352 +/- 0.027 nM) with a density (Bmax) of 35.7 +/- 2.68 pmol/g original wet tissue weight (n = 10). The affinity of [3H]spiperone for the D2 site was 0.039 +/- 0.007 nM and the density was 25.7 +/- 1.97 pmol/g original wet tissue weight (n = 10). D1 and D2 receptors in nonhuman primates may be differentiated on the basis of drug affinities and stereoselectivity. In competition experiments, RS-SKF 38393 was the most selective D1 agonist, whereas (+)-4-propyl-9-hydroxynaphthoxazine [(+)-PHNO] was the most selective D2 agonist. Apomorphine was essentially nonselective for D1 or D2 binding sites. Of the antagonists, R-SKF 83566 and SCH 23390 were the most selective for the D1 site, whereas YM-09151-2 was the most selective for the D2 site. cis-Flupentixol and (S)-butaclamol were the least selective dopamine antagonists. D1 receptors bound benzazepine antagonists (SCH 23390/SCH 23388, R-SKF 83692/RS-SKF 83692) stereoselectively whereas D2 receptors did not. Conversely D2 receptors bound (S)-sulpiride and (+)-PHNO more potently than their enantiomers whereas D1 receptors showed little stereoselectively for each of these isomeric pairs. These binding characteristics may be utilized for evaluation of individual receptor function in vivo.  相似文献   

18.
The levels of mRNA encoding glutamic acid decarboxylase (GAD) and preproenkephalin (PPE) were measured by Northern blot analysis, in the dorsal and the ventral part of the striatum, following long-term treatments with drugs acting selectively on D1 or D2 dopaminergic receptors. Chronic injection of the selective D1 antagonist SCH 23390 elicited a significant decrease in level of both GAD and PPE mRNA (-30%) in the dorsal striatum, whereas no significant change was observed in the ventral striatum. Chronic administration of both SCH 23390 and RU 24926, a D2 agonist, decreased the GAD and PPE mRNA levels in the dorsal (-38 and -57%, respectively) as well as in the ventral (-70 and -60%, respectively) striatum. In the ventral striatum the marked reduction of GAD mRNA levels was paralleled by a significant decrease of Vmax values of GAD enzymatic activity (-41%). These results suggest that the decrease in content of both GAD and PPE mRNA, promoted by the chronic blockade of D1 receptors, is mainly due to the action of dopamine acting on unaffected D2 receptors. Indeed, this decrease is further amplified when the D2 agonist and the D1 antagonist are administered together. Our results substantiate further the molecular mechanisms by which dopamine acts on different populations of GABAergic and enkephalinergic neurons in the two striatal regions examined.  相似文献   

19.
By means of in vivo microdialysis combined with HPLC analysis, we have shown that local infusions of 1 mM N-nitro-L-arginine (NO-synthase inhibitors) in the rat striatum reduced, and infusions of 100 microM apomorphine (agonists of the dopamine receptors) increased the level of citrulline (a NO co-product) in extracellular space of this structure. The apomorphine-induced increase in citrulline extracellular levels in the striatum was completely prevented by infusions of N-nitro-L-arginine in this structure, and 10 microM raclopride (dopamine D2 receptor blocker), but not by infusions of 50 microM SCH-23390 (dopamine D1 receptor blocker). The data obtained suggest that the increase in citrulline extracellular levels in striatum resulted from local activation of NO-synthase, and this effect is mediated by D2 rather than D1 dopamine receptors.  相似文献   

20.
Identification of D1-like dopamine receptors on human blood platelets   总被引:1,自引:0,他引:1  
Dopamine is able to inhibit the epinephrine-induced aggregation of human blood platelets, but the mechanism of action has not been elucidated. In this study we report that membranes from human blood platelets possess high affinity, saturable and stereoselective binding sites for the D1 dopamine receptor antagonist (3H) SCH 23390. (3H) SCH 23390 appeared to label a single class of binding sites with a Bmax of 18.6 +/- 1.6 fmol/mg protein and a KD of 0.8 nM. The potencies of different dopaminergic antagonists and agonists in displacing (3H) SCH 23390 from blood platelet membranes were similar to those obtained for striatal membranes. Unlike the classically defined D1 receptors, e.g. those in striatum, the D1 receptor sites on platelets appeared not to be coupled to the adenylate cyclase system, hence the term "D1-like". The D1 agonist SKF 38393 was more potent than dopamine in inhibiting platelet aggregation induced by epinephrine, and the effects of dopamine and SKF 38393 were prevented by SCH 23390. These results suggest that the inhibitory action of dopamine on the epinephrine-induced platelet aggregation is mediated through these D1-like receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号