首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cotton fiber is an excellent model system of cellulose biosynthesis; however, it has not been widely studied due to the lack of information about the cellulose synthase (CESA) family of genes in cotton. In this study, we initially identified six full-length CESA genes designated as GhCESA5–GhCESA10. Phylogenetic analysis and gene co-expression profiling revealed that CESA1, CESA2, CESA7, and CESA8 were the major isoforms for secondary cell wall biosynthesis, whereas CESA3, CESA5, CESA6, CESA9, and CESA10 should involve in primary cell wall formation for cotton fiber initiation and elongation. Using integrative analysis of gene expression patterns, CESA protein levels, and cellulose biosynthesis in vivo, we detected that CESA8 could play an enhancing role for rapid and massive cellulose accumulation in Gossypium hirsutum and Gossypium barbadense. We found that CESA2 displayed a major expression in non-fiber tissues and that CESA1, a housekeeping gene like, was predominantly expressed in all tissues. Further, a dynamic alteration was observed in cell wall composition and a significant discrepancy was observed between the cotton species during fiber elongation, suggesting that pectin accumulation and xyloglucan reduction might contribute to cell wall transition. In addition, we discussed that callose synthesis might be regulated in vivo for massive cellulose production during active secondary cell wall biosynthesis in cotton fibers.  相似文献   

3.
Bean (Phaseolus vulgaris L.) cells have been habituated to grow in lethal concentrations of dichlobenil (DCB), a specific inhibitor of cellulose biosynthesis. Bean callus cells were successively cultured in increasing DCB concentrations up to 2 μM. The 2-μM DCB habituated cells were impoverished in cellulose and xyloglucan, had an increased xyloglucan endotransglucosylase (XET; EC 2.4.1.207) activity, together with an increased growth rate and a decreased molecular size of xyloglucan. However, the application of lethal concentrations of two different cellulose-biosynthesis inhibitors (DCB and isoxaben) for a short period of time produced little effect on XET activity and xyloglucan molecular size. We propose that the weakening of plant cell wall provoked by decrease in cellulose content might promote the xyloglucan tethers and increase the ability of xyloglucan to bind to cellulose in order to give rigidity to the wall.  相似文献   

4.
Phytosterols play an important role in plant growth and development, including cell division, cell elongation, embryogenesis, cellulose biosynthesis, and cell wall formation. Cotton fiber, which undergoes synchronous cell elongation and a large amount of cellulose synthesis, is an ideal model for the study of plant cell elongation and cell wall biogenesis. The role of phytosterols in fiber growth was investigated by treating the fibers with tridemorph, a sterol biosynthetic inhibitor. The inhibition of phytosterol biosynthesis resulted in an apparent suppression of fiber elongation in vitro or in planta. The determination of phytosterol quantity indicated that sitosterol and campesterol were the major phytosterols in cotton fibers; moreover, higher concentrations of these phytosterols were observed during the period of rapid elongation of fibers. Furthermore, the decrease and increase in campesterol:sitosterol ratio was associated with the increase and decease in speed of elongation, respectively, during the elongation stage. The increase in the ratio was associated with the transition from cell elongation to secondary cell wall synthesis. In addition, a number of phytosterol biosynthetic genes were down-regulated in the short fibers of ligon lintless-1 mutant, compared to its near-isogenic wild-type TM-1. These results demonstrated that phytosterols play a crucial role in cotton fiber development, and particularly in fiber elongation.  相似文献   

5.
Endosidin20 (ES20) is a recently identified cellulose biosynthesis inhibitor (CBI) that targets the catalytic site of plant cellulose synthase (CESA). Here, we screened over 600 ES20 analogs and identified nine active analogs named ES20-1 to ES20-9. Among these, endosidin20-1 (ES20-1) had stronger inhibitory effects on plant growth and cellulose biosynthesis than ES20. At the biochemical level, we demonstrated that ES20-1, like ES20, directly interacts with CESA6. At the cellular level, this molecule, like ES20, induced the accumulation of cellulose synthase complexes at the Golgi apparatus and inhibited their secretion to the plasma membrane. Like ES20, ES20-1 likely targets the catalytic site of CESA. However, through molecular docking analysis using a modeled structure of full-length CESA6, we found that both ES20 and ES20-1 might have another target site at the transmembrane regions of CESA6. Besides ES20, other CBIs such as isoxaben, C17, and flupoxam are widely used tools to dissect the mechanism of cellulose biosynthesis and are also valuable resources for the development of herbicides. Here, based on mutant genetic analysis and molecular docking analysis, we have identified the potential target sites of these CBIs on a modeled CESA structure. Some bacteria also produce cellulose, and both ES20 and ES20-1 inhibited bacterial cellulose biosynthesis. Therefore, we conclude that ES20-1 is a more potent analog of ES20 that inhibits intrinsic cellulose biosynthesis in plants, and both ES20 and ES20-1 show an inhibitory effect on bacterial growth and cellulose synthesis, making them excellent tools for exploring the mechanisms of cellulose biosynthesis across kingdoms.  相似文献   

6.

Background and Aims

The herbicide quinclorac has been reported to inhibit incorporation of glucose both into cellulose and other cell wall polysaccharides. However, further work has failed to detect any apparent effect of this herbicide on the synthesis of the wall. In order to elucidate whether quinclorac elicits the inhibition of cellulose biosynthesis directly, in this study bean cell calli were habituated to grow on lethal concentrations of the herbicide and the modifications in cell wall composition due to the habituation process were analysed.

Methods

Fourier transform infrared spectroscopy associated with multivariate analysis, cell wall fractionation techniques, biochemical analyses and the immunolocation of different cell wall components with specific monoclonal antibodies were used to characterize the cell walls of quinclorac-habituated cells.

Key Results

Quinclorac-habituated cells were more irregularly shaped than non-habituated cells and they accumulated an extracellular material, which was more abundant as the level of habituation rose. Habituated cells did not show any decrease in cellulose content, but cell wall fractionation revealed that changes occurred in the distribution and post-depositional modifications of homogalacturonan and rhamnogalacturonan I during the habituation process. Therefore, since the action of quinclorac on the cell wall does not seem to be due to a direct inhibition of any cell wall component, it is suggested that the effect of quinclorac on the cell wall could be due to a side-effect of the herbicide.

Conclusions

Long-term modifications of the cell wall caused by the habituation of bean cell cultures to quinclorac did not resemble those of bean cells habituated to the well-known cellulose biosynthesis inhibitors dichlobenil or isoxaben. Quinclorac does not seem to act primarily as an inhibitor of cellulose biosynthesis.Key words: Quinclorac, herbicide, Phaseolus vulgaris, cell culture habituation, primary cell wall, cellulose, FTIR spectroscopy  相似文献   

7.
8.
The effect of the herbicide isoxaben on the incorporation of radiolabeled glucose, leucine, uracil, and acetate into acid insoluble cell wall material, protein, nucleic acids, and fatty acids, respectively, was measured. Dichlobenil, cycloheximide, actinomycin D, and cerulenin, inhibitors of the incorporation of these precursors into these macromolecular components, functioned as expected, providing positive controls. The incorporation of radiolabeled glucose into an acid insoluble cell wall fraction was severely inhibited by isoxaben at nanomolar concentrations. Amitrole, fluridone, ethalfluralin, and chlorsulfuron, as well as cycloheximide, actinomycin D, and cerulenin did not inhibit incorporation of glucose into this fraction, ruling out a general nonspecific effect of herbicides on glucose incorporation. The evidence thus suggests that isoxaben is an extremely powerful and specific inhibitor of cell wall biosynthesis.  相似文献   

9.
10.
Carbon partitioning to cellulose synthesis   总被引:39,自引:0,他引:39  
This article discusses the importance and implications of regulating carbon partitioning to cellulose synthesis, the characteristics of cells that serve as major sinks for cellulose deposition, and enzymes that participate in the conversion of supplied carbon to cellulose. Cotton fibers, which deposit almost pure cellulose into their secondary cell walls, are referred to as a primary model system. For sucrose synthase, we discuss its proposed role in channeling UDP-Glc to cellulose synthase during secondary wall deposition, its gene family, its manipulation in transgenic plants, and mechanisms that may regulate its association with sites of polysaccharide synthesis. For cellulose synthase, we discuss the organization of the gene family and how protein diversity could relate to control of carbon partitioning to cellulose synthesis. Other enzymes emphasized include UDP-Glc pyrophosphorylase and sucrose phosphate synthase. New data are included on phosphorylation of cotton fiber sucrose synthase, possible regulation by Ca2+ of sucrose synthase localization, electron microscopic immunolocalization of sucrose synthase in cotton fibers, and phylogenetic relationships between cellulose synthase proteins, including three new ones identified in differentiating tracheary elements of Zinnia elegans. We develop a model for metabolism related to cellulose synthesis that implicates the changing intracellular localization of sucrose synthase as a molecular switch between survival metabolism and growth and/or differentiation processes involving cellulose synthesis. Abbreviations: CesA, cellulose synthase; Csl, cellulose-like synthase (genes); DCB, dichlobenil; DPA, days after anthesis; SPS, sucrose phosphate synthase; SuSy, sucrose synthase; P-SuSy, particulate SuSy; S-SuSy, soluble SuSy  相似文献   

11.
Summary The growth of submerged cotton (Gossypium hirsutum L.) fibers from cultured ovules has been investigated. The results indicate that exogenous plant hormone levels regulate the induction of submerged fiber growth. The age of ovules at induction is also important. Cell diameter, wall thickness, and cell length of submerged fibers were measured and compared with air-grown fibers and fibers grown in vivo (produced by cotton plants grown in the greenhouse). Various cellwall thickening patterns were observed among submerged fibers, while only one predominant cell-wall deposition pattern was produced in air-grown fibers and in fibers produced in vivo. The diameter of submerged fibers was about the same as that of air-grown fibers but about 22% less than that of fibers grown, in vivo. It appears that the secondary cell wall thickenings are initiated earlier in submerged fibers. The cell-wall thickness of submerged fibers, at 41 d post anthesis (DPA), was 51% greater than that of fibers grown in vivo, whereas the cell-wall thickness of air-grown fibers was 42% less than that of fibers produced in vivo. The cell length of submerged fibers was approximately half that of fibers grown in vivo. and the air-grown fiber length was about two-thirds of fibers grown in vivo. The age of ovules at induction affects the outcome of the air-grown fiber-cell length, but does not appear to affect the length of submerged fiber cells. To produce submerged fiber growth, we found that the optimal age of ovules at induction was 0 DPA, and the optimal medium (with a GA3 of 0.5 μM and an IAA range of 5-20 μM) depends on the time of ovule induction (−2 to+2DPA). We conclude that conditions leading to submerged cotton fiber growth have great potential for (a) direct monitoring of growth and making precise, detailed measurements during fiber growth and development; (b) producing cellulose and fibers in vitro more efficiently than earlier ovule-culture methods; and (c) using these unique cultures to obtain a better understanding of signal transduction and gene expression leading to growth, development, and programmed cell death in the life history of the cotton fiber.  相似文献   

12.
Cotton fiber is an important natural textile fiber due to its exceptional length and thickness. These properties arise largely through primary and secondary cell wall synthesis. The cotton fiber of commerce is a cellulosic secondary wall surrounded by a thin cuticulated primary wall, but there were only sparse details available about the polysaccharides in the fiber cell wall of any cotton species. In addition, Gossypium hirsutum (Gh) fiber was known to have an adhesive cotton fiber middle lamella (CFML) that joins adjacent fibers into tissue-like bundles, but it was unknown whether a CFML existed in other commercially important cotton fibers. We compared the cell wall chemistry over the time course of fiber development in Gh and Gossypium barbadense (Gb), the two most important commercial cotton species, when plants were grown in parallel in a highly controlled greenhouse. Under these growing conditions, the rate of early fiber elongation and the time of onset of secondary wall deposition were similar in fibers of the two species, but as expected the Gb fiber had a prolonged elongation period and developed higher quality compared to Gh fiber. The Gb fibers had a CFML, but it was not directly required for fiber elongation because Gb fiber continued to elongate rapidly after CFML hydrolysis. For both species, fiber at seven ages was extracted with four increasingly strong solvents, followed by analysis of cell wall matrix polysaccharide epitopes using antibody-based Glycome Profiling. Together with immunohistochemistry of fiber cross-sections, the data show that the CFML of Gb fiber contained lower levels of xyloglucan compared to Gh fiber. Xyloglucan endo-hydrolase activity was also higher in Gb fiber. In general, the data provide a rich picture of the similarities and differences in the cell wall structure of the two most important commercial cotton species.  相似文献   

13.
Bowling AJ  Vaughn KC  Turley RB 《Protoplasma》2011,248(3):579-590
The cotton fiber is a model system to study cell wall biosynthesis because the fiber cell elongates (∼3 cm in ∼20 days) without mitosis. In this study, developing cotton ovules, examined from 1 day before anthesis (DBA) to 2 days post-anthesis (DPA), that would be difficult to investigate via classical carbohydrate biochemistry were probed using a battery of antibodies that recognize a large number of different wall components. In addition, ovules from these same stages were investigated in three fiberless lines. Most antibodies reacted with at least some component of the ovule, and several of the antibodies reacted specifically with the epidermal layer of cells that may give clues as to the nature of the development of the fibers and the neighboring, nonfiber atrichoblasts. Arabinogalactan proteins (AGPs) labeled the epidermal layers more strongly than other ovular tissue, even at 1 DBA. One of the AGP antibodies, CCRC-M7, which recognizes a 1➔6 galactan epitope of AGPs, is lost from the fiber cells by 2 DPA, although labeling in the atrichoblasts remained strong. In contrast, LM5 that recognizes a 1➔4 galactan RGI side chain is unreactive with sections until the fibers are produced and only the fibers are reactive. Dramatic changes also occur in the homogalacturonans (HGs). JIM5, which recognizes highly de-esterified HGs, only weakly labels epidermal cells of 1 DBA and 0 DPA ovules, but labeling increases in fibers cells, where a pectinaceous sheath is produced around the fiber cell and stronger reaction in the internal and external walls of the atrichoblast. In contrast, JIM7-reactive, highly esterifed HGs are present at high levels in the epidermal cells throughout development. Fiberless lines displayed similar patterns of labeling to the fibered lines, except that all of the cells had the labeling pattern of atrichoblasts. That is, CCRC-M7 labeled all cells of the fiberless lines, and LM5 labeled no cells at 2 DPA. These data indicate that a number of polysaccharides are unique in quantity or presence in the epidermal cell layers, and some of these might be critical participants in the early stages of initiation and elongation of cotton fibers.  相似文献   

14.
The herbicide 2,6-dichlorobenzonitrile (DCB) is an effective and apparently specific inhibitor of cellulose synthesis in higher plants. We have synthesized a photoreactive analog of DCB (2,6-dichlorophenylazide [DCPA]) for use as an affinity-labeling probe to identify the DCB receptor in plants. This analog retains herbicide activity and inhibits cellulose synthesis in cotton fibers and tobacco cells in a manner similar to DCB. When cotton fiber extracts are incubated with [3H]DCPA and exposed to ultraviolet light, an 18 kilodalton polypeptide is specifically labeled. About 90% of this polypeptide is found in the 100,000g supernatant, the remainder being membrane-associated. Gel filtration and nondenaturing polyacrylamide gel electrophoresis of this polypeptide indicate that it is an acidic protein which has a similar size in its native or denatured state. The amount of 18 kilodalton polypeptide detectable by [3H]DCPA-labeling increases substantially at the onset of secondary wall cellulose synthesis in the fibers. A similar polypeptide, but of lower molecular weight (12,000), has been detected upon labeling of extracts from tomato or from the cellulosic alga Chara corallina. The specificity of labeling of the 18 kilodalton cotton fiber polypeptide, coupled with its pattern of developmental regulation, implicate a role for this protein in cellulose biosynthesis. Being, at most, only loosely associated with membranes, it is unlikely to be the catalytic polypeptide of the cellulose synthase, and we suggest instead that the DCB receptor may function as a regulatory protein for β-glucan synthesis in plants.  相似文献   

15.
Lazzaro MD  Donohue JM  Soodavar FM 《Protoplasma》2003,220(3-4):201-207
Summary.  In elongating pollen tubes of the conifer Picea abies (Norway spruce), microtubules form a radial array beneath the plasma membrane only at the elongating tip and an array parallel with elongation throughout the tube. Tips specifically swell following microtubule disruption. Here we test whether these radial microtubules coordinate cell wall deposition and maintain tip integrity as tubes elongate. Control pollen tubes contain cellulose throughout the walls, including the tip. Pollen tubes grown in the presence of isoxaben, which disrupts cellulose synthesis, are significantly shorter with a decrease in cellulose throughout the walls. Isoxaben also significantly increases the frequency of tip swelling, with no effect on tube width outside of the swollen tip. The decrease in cellulose is more pronounced in pollen tubes with swollen tips. The effects of isoxaben are reversible. Following isoxaben treatment, the radial array of microtubules persists beneath the plasma membrane of nonswollen tips, while this array is specifically disrupted in swollen tips. Microtubules instead form a random network throughout the tip. Growth in these pollen tubes is turgor driven, but the morphological changes due to isoxaben are not just the result of weakened cell walls since pollen tubes grown in hypoosmotic media are not significantly shorter but do have swollen tips and tubes are wider along their entire length. We conclude that the radial microtubules in the tip do maintain tip integrity and that the specific inhibition of cellulose microfibril deposition leads to the disorganization of these microtubules. This supports the emerging model that there is bidirectional communication across the plasma membrane between cortical microtubules and cellulose microfibrils. Received January 15, 2002; accepted August 3, 2002; published online March 11, 2003  相似文献   

16.
Summary Young cotton (Gossypium hirsutum) ovules will produce fiber in vitro when floated on a defined culture medium. Our laboratory is interested in examining the effects of altered gravity environments on fiber development as a model for the effects of gravity on cell expansion and cellulose biosynthesis. Since liquid culture media are unsuitable for altered gravity experiments, addition of gelling agents to cotton ovule culture media is necessary. In this study we have systematically examined the effects of four gelling agents at several concentrations on fiber production in culture. A rapid screening method using toluidine blue O staining indicated that after 3 wk in culture, fiber growth on 0.15% (wt/vol) Phytagel™ medium was similar to fiber growth on liquid medium. More detailed analysis of fiber development revealed that fiber length was not influenced by the addition of Phytagel™. Accumulation of cellulose, however, was reduced 50–60% compared with fibers produced in liquid media after 3 wk in culture. The fiber cellulose content rose with additional time in culture for both solid and liquid media treatments. By 4 wk in culture, the difference in cellulose content of fiber cell walls grown on solid versus liquid media was less than 20%. This variance in growth response on gelled media could be due to differences in media matric potential, to the immobility of ions trapped within the gel, or to toxicity of contaminants copurifying with Phytagel™. By identifying why ovule growth and fiber cellulose biosynthesis are reduced in cultures grown on gelled media, it will be possible to reveal new information about these processes in system that is less complicated than physiological systems at the whole plant level. Names of companies or commercial products are given solely for the purpose of providing specific information; their mention does not imply recommendation or endorsement by the U.S. Department of Agriculture over others not mentioned.  相似文献   

17.
18.
The composition of the cell wall of the cotton fiber (Gossypium hirsutum L. Acala SJ-1) has been studied from the early stages of elongation (5 days postanthesis) through the period of secondary wall formation, using cell walls derived both from fibers developing on the plant and from fibers obtained from excised, cultured ovules. The cell wall of the elongating cotton fiber was shown to be a dynamic structure. Expressed as a weight per cent of the total cell wall, cellulose, neutral sugars (rhamnose, fucose, arabinose, mannose, galactose, and noncellulosic glucose), uronic acids, and total protein undergo marked changes in content during the elongation period. As a way of analyzing absolute changes in the walls with time, data have also been expressed as grams component per millimeter of fiber length. Expressed in this way for plant-grown fibers, the data show that the thickness of the cell wall is relatively constant until about 12 days postanthesis; after this time it markedly increases until secondary wall cellulose deposition is completed. Between 12 and 16 days postanthesis increases in all components contribute to total wall increase per millimeter fiber length. The deposition of secondary wall cellulose begins at about 16 days postanthesis (at least 5 days prior to the cessation of elongation) and continues until about 32 days postanthesis. At the time of the onset of secondary wall cellulose deposition, a sharp decline in protein and uronic acid content occurs. The content of some of the individual neutral sugars changes during development, the most prominent change being a large increase in noncellulosic glucose which occurs just prior to the onset of secondary wall cellulose deposition. Methylation analyses indicate that this glucose, at least in part, is 3-linked. In contrast to the neutral sugars, no significant changes in cell wall amino acid composition are observed during fiber development.  相似文献   

19.
20.
The fungal cell wall constitutes an important target for the development of antifungal drugs, because of its central role in morphogenesis, development and determination of fungal-specific molecular features. Fungal walls are characterized by a network of interconnected glycoproteins and polysaccharides, namely α-, β-glucans and chitin. Cell walls promptly and dynamically respond to environmental stimuli by a signaling mechanism, which triggers, among other responses, modulations in wall biosynthetic genes’ expression. Despite the absence of cellulose in the wall of the model filamentous fungus Aspergillus nidulans, we found in this study that fungal growth, spore germination and morphology are affected by the addition of the cellulose synthase inhibitor dichlobenil. Expression analysis of selected genes putatively involved in cell wall biosynthesis, carried out at different time points of drug exposure (i.e. 0, 1, 3, 6 and 24 h), revealed increased expression for the putative mixed linkage β-1,3;1,4 glucan synthase celA together with the β-1,3-glucan synthase fksA and the Rho-related GTPase rhoA. We also compared these data with the response to Congo Red, a known plant/fungal drug affecting both chitin and cellulose biosynthesis. The two drugs exerted different effects at the cell wall level, as shown by gene expression analysis and the ultrastructural features observed through atomic force microscopy and scanning electron microscopy. Although the concentration of dichlobenil required to affect growth of A. nidulans is approximately 10-fold higher than that required to inhibit plant cellulose biosynthesis, our work for the first time demonstrates that a cellulose biosynthesis inhibitor affects fungal growth, changes fungal morphology and expression of genes connected to fungal cell wall biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号