首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The effect of a 1-hr light pulse, given at night, on the timing of the circadian rhythm in the plasma concentration of melatonin was examined in Soay rams to investigate the mechanisms involved in determining the duration of the nocturnal peak in melatonin secretion. Animals (n = 8) were housed under short days (LD 8:16) or long days (LD 16:8) and received a light pulse at various times of night. They were released into constant dim red light (DD) on day 1. Blood samples were collected hourly for 30 hr from 1000 hr on day 3, and the plasma concentration of melatonin was determined by radioimmunoassay to assess the timing of the melatonin peak. Control animals (n = 8) were maintained under the same conditions but received no light pulse. Under short days, a light pulse given early in the night caused a phase delay in the melatonin peak, and a light pulse given in the late night caused a phase advance. The mean duration of the melatonin peak was slightly reduced following a light pulse in the early or late night, and slightly increased following a pulse given near the middle of the night. Under long days, both light-pulse treatments given at night caused a phase delay in the melatonin peak, but there was no significant change in duration of the melatonin peak. The duration of the melatonin peak at day 3 under DD in the control animals was similar for all treatments, regardless of the previous entraining photoperiod (mean duration: 12.6-14.8 hr) and was similar to that under short days (14.6 hr), but was significantly longer than that under long days (8.2 hr). Information on the phase response curve in the Soay ram and on the period of the circadian oscillator governing the melatonin rhythm (c 23.0 hr under DD) predicts a close phase relationship between the end of the light phase and the onset of the melatonin peak as observed under normal 24-hr LD cycles. The current results also indicate that light acts to entrain the circadian rhythm influencing the onset and offset of melatonin secretion, and thus dictates the duration of the melatonin peak.  相似文献   

2.
Ovohysterectomized female ferrets were housed in controlled environment rooms in which the daily lighting schedule was either 15L:9D (long days) or 9L:15D (short days). After 2 weeks some ferrets in each group were given an intrajugular catheter: beginning 1 week later, a blood sample was taken daily at one of eight different clock times over an 8 to 10 day period. One additional blood sample plus the pineal gland were collected from these animals and from uncathetarized animals in each group after decapitation at different clock times. Both plasma melatonin concentrations and pineal melatonin content were elevated in a square-wave pattern during the dark hours, with the duration of elevation being longer in ferrets kept under the short days. These results suggest that differences in the duration of nocturnal increments in melatonin secretion may mediate the stimulatory and inhibitory effects of long and short days, respectively, on ovarian activity in female ferrets.  相似文献   

3.
Daily rhythms of pineal and serum melatonin content were characterized for adult female Turkish hamsters (Mesocricetus brandti) exposed to long days (16L:8D, 22 degrees C) or after transfer to short days (10L:14D, 22 degrees C). The nocturnal peak of pineal melatonin content was found to be approximately 3 b greater in duration on short than on long days. Changes in levels of serum melatonin closely paralleled those of pineal melatonin. Thus, an effect of photoperiod on synthesis and secretion of pineal melatonin was demonstrated. In a separate experiment, female hamsters were induced to hibernate by exposure to a short-day, cold environment (10L:14D, 6 degrees C). During the 4 to 5-mo hibernation season, Turkish hamsters are known to display 4 to 8-day hours of torpor (body temperature = 7-9 degrees C) alternating with 1 to 3-day intervals of euthermia (body temperature = 35-37 degrees C). Little evidence of nocturnal synthesis or secretion of pineal melatonin was detected in females sampled during torpor. However, animals sampled during the first day after arousal from a torpor bout displayed melatonin rhythms no different in phase or amplitude from those seen in females held at 22 degrees C. Thus, despite the absence of pineal melatonin output during torpor, the pineal gland of hibernating Turkish hamsters produces an appropriately phased, rhythmic melatonin signal during intervals of euthermia.  相似文献   

4.
Continuous exposure of male hamsters to short day lengths induces testicular regression. This is followed many weeks later by spontaneous recrudescence of the testes with reinitiation of spermatogenesis and function of the accessory sexual glands. Hamsters at this stage of the annual reproductive cycle are refractory to short photoperiods--even continuous darkness will not induce another bout of testicular regression. Animals refractory to short days are also refractory to the pineal hormone melatonin and a number of investigators attribute spontaneous recrudescence and photo and melatonin refractoriness to a developed target cell insensitivity to endogenous melatonin from the pineal. Refractoriness is terminated by exposure to long days for at least 11 weeks. The pineal gland is reported to be essential for this process. We report here the effects of pinealectomy, daily melatonin injections, and constant-release melatonin implants on the ability of male hamsters to recover from the refractory state. In the absence of the pineal gland, refractory male hamsters did not discriminate (count?) 15 weeks of long days to terminate refractoriness. Daily melatonin injections at 1900 h, but not at 1200 h (lights 0600-2000 h) during the 15 weeks of long-day exposure blocked the recovery from refractoriness. Constant-release melatonin implants abolished the animals ability to measure 12 and 15 weeks of long days to terminate refractoriness. These results demonstrate that general target tissue insensitivity to melatonin cannot account for the refractory state in hamsters, that a multiplicity of target tissues may exist for melatonin to account for its varied roles throughout the annual reproductive cycle in hamsters, and that the pineal gland is intimately involved in the animals' ability to measure a prescribed duration of long days to terminate refractoriness.  相似文献   

5.

Background

Seasonal fluctuations in physiology and behavior depend on the duration of nocturnal melatonin secretion programmed by the circadian system. A melatonin signal of a given duration, however, can elicit different responses depending on whether an animal was previously exposed to longer or shorter photoperiod signals (i.e., its photoperiodic history). This report examined in male Siberian hamsters which of two aspects of photoperiod history – prior melatonin exposure or entrainment state of the circadian system – is critical for generating contingent responses to a common photoperiodic signal.

Results

In Experiment #1, daily melatonin infusions of 5 or 10 h duration stimulated or inhibited gonadal growth, respectively, but had no effect on entrainment of the locomotor activity rhythm to long or short daylengths, thereby demonstrating that melatonin history and entrainment status could be experimentally dissociated. These manipulations were repeated in Experiment #2, and animals were subsequently exposed to a 12 week regimen of naturalistic melatonin signals shown in previous experiments to reveal photoperiodic history effects. Gonadal responses differed as a function of prior melatonin exposure but were unaffected by the circadian entrainment state. Experiment #3 demonstrated that a new photoperiodic history could be imparted during four weeks of exposure to long photoperiods. This effect, moreover, was blocked in animals treated concurrently with constant release melatonin capsules that obscured the endogenous melatonin signal: Following removal of the implants, the gonadal response depended not on the immediately antecedent circadian entrainment state, but on the more remote photoperiodic conditions prior to the melatonin implant.

Conclusions

The interpretation of photoperiodic signals as a function of prior conditions depends specifically on the history of melatonin exposure. The photoperiodic regulation of circadian entrainment state contributes minimally to the interpretation of melatonin signals.
  相似文献   

6.
This study investigated the roles of the melatonin signal and the circadian system in the induction of photoperiodic responses in the male Syrian hamster. Pinealectomized animals received programmed s.c. infusions of saline or melatonin. Saline infusions for 10 h or melatonin for 4 h during the night had no effect on the reproductive axis whereas nightly 10-h infusions of melatonin induced gonadal atrophy. Animals that received 10-h infusions of melatonin arranged such that consecutive daily signals were delivered alternately during the day and night also exhibited gonadal atrophy, whereas melatonin signals delivered every 48 h, exclusively during either the day or night, were without effect. These results demonstrate that the brain is able to read melatonin signals delivered at different phases of the circadian cycle and to use them in combination to generate an appropriate photoperiodic response. Melatonin signals lasting 10 h delivered to pinealectomized (PX) animals every 24 h induced gonadal regression. Melatonin delivered at periodicities of 20 h, 23 h, and 25 h also caused gonadal regression whereas infusions every 28 h were without effect, demonstrating that the systems responsive to melatonin are sensitive to signal frequency but do not need to receive the signal on a strictly circadian basis. These results are discussed in the context of the significance of the melatonin-free interval. PX animals that received sham or bilateral lesions of the suprachiasmatic nuclei (SCN) were infused nightly for 10 h with saline or melatonin. Melatonin infusions were equally effective at inducing gonadal atrophy and lowering serum testosterone levels in both sham- and SCN-lesioned animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The goal of this study was to discriminate between two hypotheses regarding how the circadian rhythm of pineal melatonin (MEL) production transmits photoperiodic information: (1) A circadian rhythm of sensitivity to MEL regulates the hormone's effect; (2) the duration of the MEL signal, rather than its circadian timing, is the critical parameter of the MEL rhythm. The experiment examined the response of pinealectomized (PINX) male Siberian hamsters to 10-hr (short-day-type) versus 6-hr (long-day-type) duration MEL infusions (10 ng/infusion) in cycles with period lengths (T) of 18, 24, 36, and 48 hr. After cannula implantation, animals were moved from LD 16:8 to LD 10:14 (lights-on from 0500 to 1500 hr, EST), where the timed infusions began. Additional T 24 cycles included as controls employed 18-hr MEL, 18-hr saline (SAL), and 10-hr SAL infusions: Body weight and food intake were measured weekly. After 6 weeks, animals were killed; blood samples were taken for radioimmunoassay (RIA) of serum follicle-stimulating hormone (FSH) and prolactin (PRL); and terminal body, epididymal white adipose tissue (EPIWAT), and paired testis weights were recorded. Six-hour MEL infusions failed to induce short-day-type effects, regardless of the period (T) of the infusion cycle. In contrast, compared to SAL and 6-hr MEL infusions, 10-hr MEL resulted in decreases in body, EPIWAT, and testis weights in T 24, but not in T 36 or T 48. In T 18, testis, body, and EPIWAT mass were decreased, but not to the same extent as in T 24. Similarly, daily 18-hr MEL infusions (T24) were less effective as a short-day stimulus than were 10-hr MEL infusions. The effectiveness of 10-hr, but not 6-hr, MEL infusions in T 18 and T 24 is consistent with the duration hypothesis and argues against the circadian hypothesis. Neither hypothesis could have predicted that all infusion cycles of T greater than or equal to 36 hr, regardless of the infusion durations, would fail to elicit short-day-type responses. This outcome suggests a need for relatively frequent (T less than 36 hr) MEL stimulation in addition to the requirement for adequate duration of each MEL infusion.  相似文献   

8.
The pineal hormone melatonin influences circadian rhythms and also mediates reproductive responses to photoperiod. The authors tested whether pinealectomy influences circadian oscillators responsible for induction of nonresponsiveness to short day lengths by preventing normal short-day patterns of circadian entrainment. Adult male Siberian hamsters were pinealectomized or sham operated, maintained in either 18 h light per day (18L) or 15L for 10 weeks, and then tested for responsiveness to 10L. Because pinealectomized hamsters do not show gonadal regression in short day lengths, responsiveness was assessed by measuring phase angle of entrainment and the length of the nightly activity period following transfer to 10L. The incidence of nonresponsiveness was significantly higher in 18L hamsters than in 15L hamsters but was unaffected by pineal status. Fully 88% of 18L hamsters failed to entrain to 10L in the normal short-day manner; the duration of nightly activity remained compressed, and the phase angle of entrainment was large and negative relative to lights off. The 15L hamsters entrained normally to 10L. Exposure to constant light after 10L treatment was equally effective in inducing arrhythmicity in pinealectomized and intact hamsters. Changes in the period of morning and evening circadian oscillators subsequent to 18L treatment did not predict circadian responsiveness to short photoperiod. Long-day induction of photo-nonresponsiveness, which prevents winter responses to short day lengths, occurs independently of pineal melatonin feedback on the circadian system.  相似文献   

9.
The light/dark cycle to which animals, and possibly humans, are exposed has a major impact on their physiology. The mechanisms whereby specific tissues respond to the light/dark cycle involve the pineal hormone melatonin. The pineal gland, an end organ of the visual system in mammals, produces the hormone melatonin only at night, at which time it is released into the blood. The duration of elevated nightly melatonin provides every tissue with information about the time of day and time of year (in animals that are kept under naturally changing photoperiods). Besides its release in a circadian mode, melatonin is also discharged in a pulsatile manner; the physiological significance, if any, of pulsatile melatonin release remains unknown. The exposure of animals including man to light at night rapidly depresses pineal melatonin synthesis and, therefore, blood melatonin levels drop precipitously. The brightness of light at night required to depress melatonin production is highly species specific. In general, the pineal gland of nocturnally active mammals, which possess rod-dominated retinas, is more sensitive to inhibition by light than is the pineal gland of diurnally active animals (with cone-dominated retinas). Because of the ability of the light/dark cycle to determine melatonin production, the photoperiod is capable of influencing the function of a variety of endocrine and non-endocrine organs. Indeed, melatonin is a ubiquitously acting pineal hormone with its effects on the neuroendocrine system having been most thoroughly investigated. Thus, in nonhuman photoperiodic mammals melatonin regulates seasonal reproduction; in humans also, the indole has been implicated in the control of reproductive physiology.Summary of a Plenary Lecture presented by the author in Vienna, August, 1990  相似文献   

10.
We investigated the impact of frequency and pattern of melatonin signals on reproductive development in Siberian hamsters. Juvenile males gestated in short day lengths and housed in constant illumination to suppress melatonin secretion were infused with melatonin for 5 h either once or twice per day for 20 days. Melatonin infusions at either frequency produced equivalent increases in testes and body weights that exceeded those of animals infused with saline but were indistinguishable from those of hamsters transferred to long day lengths. The reproductive system appears to be maximally stimulated by a single short melatonin signal each day. Other animals kept from birth in a short photoperiod were treated 6 h after onset of darkness with the beta-adrenergic receptor antagonist DL-propranolol to shorten melatonin secretion on the night of injection but not on subsequent nights. This permitted interpolation of short nightly melatonin signals of 4-5 h duration against a background of long melatonin signals of 10-12 h duration on other nights. Treatment regimes that maintained a 1:1 ratio of short to long melatonin signals for 8 wk stimulated reproductive development; a 1:2 signal ratio, in each of three different patterns, was uniformly ineffective. The number of successive short melatonin signals had little influence on the interval across which successive melatonin signals were summated to influence photoperiodic traits. The neuroendocrine axis appears more responsive to short melatonin signal frequency than pattern for development of the summer phenotype.  相似文献   

11.
Both light and temperature can influence the pineal's synthesis of the indoleamine melatonin. An investigation of the effects of light and temperature cycles on the pineal melatonin rhythm (PMR) showed the following: (1) Both daily light cycles and daily temperature cycles could entrain the PMR; melatonin levels peaked during the dark phase of a light-dark cycle or the cool phase of a temperature cycle. (2) The PMR could be entrained by a temperature cycle as low as 2 degrees C in amplitude in lizards held in constant light or constant darkness. (3) The length of the photoperiod or thermoperiod affected the phase, amplitude, or duration of the PMR. (4) When presented together, the effects of light and temperature cycles on the PMR depended on the phase relationship between the light and temperature cycles, as well as on the strength of the entraining stimuli, such as the amplitude of the temperature cycle. (5) Exposure to a constant cold temperature (10 degrees C) eliminated the PMR, yet a rhythm could still be expressed under a 24-hr temperature cycle (32 degrees C/10 degrees C), and the rhythm peaked during the 10 degrees C phase of the cycle. (6) A 6-hr dark pulse presented during the day did not elicit a premature rise in melatonin levels. These studies show how environmental stimuli can control the pineal rhythm of melatonin synthesis and secretion. Previous studies have supported a model in which the lizard's pineal acts as a circadian pacemaker within a multioscillator circadian system, and have implicated melatonin as a hormone by which the pineal may communicate with the rest of the system. The lizard pineal, therefore, may act as a photo- and thermoendocrine transducer translating light and temperature information into an internal cue in the form of the PMR. The PMR, in turn, may control the phase and period of circadian clocks located elsewhere, insuring that the right internal events occur at the right time of day.  相似文献   

12.
13.
The pineal controls the reproductive response of ewes to both stimulatory (short) and inhibitory (long) day lengths. Melatonin, a pineal hormone whose nocturnal secretion is entrained by photoperiod, mediates the effect of stimulatory photoperiod. We now report that melatonin also mediates the effect of inhibitory day length, monitored as response to estradiol negative feedback on luteinizing hormone (LH) secretion. Ovariectomized, estradiol-implanted ewes were pinealectomized and intravenously infused with melatonin to restore the nightly melatonin rise. Following transfer from short to long days, and a concurrent switch from short- to long-day melatonin patterns, LH dropped precipitously in pinealectomized ewes, matching the photoinhibitory response of pineal intact controls. LH dropped similarly in pinealectomized ewes when long-day melatonin was infused under short days. Pinealectomized ewes transferred from long to short days displayed a marked LH rise, provided melatonin was also switched to the short-day pattern. LH remained suppressed if long-day melatonin was infused following transfer to short days. These data indicate the nighttime melatonin rise mediates reproductive responses to inhibitory, as well as stimulatory photoperiods; they further suggest the duration of this rise controls suppression of LH under long days. Rather than being strictly pro- or antigonadal, the pineal participates in measuring day length.  相似文献   

14.
B D Goldman 《Steroids》1999,64(9):679-685
Circadian systems in a wide variety of organisms all appear to include three basic components: 1) biological oscillators that maintain a self-sustained circadian periodicity in the absence of environmental time cues; 2) input pathways that convey environmental information, especially light cues, that can entrain the circadian oscillations to local time; and 3) output pathways that drive overt circadian rhythms, such as the rhythms of locomotor activity and a variety of endocrine rhythms. In mammals, the circadian system is employed in the regulation of reproductive physiology and behavior in two very important ways. 1) In some species, there is a strong circadian component in the timing of ovulation and reproductive behavior, ensuring that these events will occur at a time when the animal is most likely to encounter a potential mate. 2) Many mammals exhibit seasonal reproductive rhythms that are largely under photoperiod regulation; in these species, the circadian system and the pineal gland are crucial components of the mechanism that is used to measure day length. The rhythm of pineal melatonin secretion is driven by a neural pathway that includes the circadian oscillator(s) in the suprachiasmatic nuclei. Melatonin is secreted at night in all mammals, and the duration of each nocturnal episode of melatonin secretion is inversely related to day length. The pineal melatonin rhythm appears to serve as an internal signal that represents day length and that is capable of regulating a variety of seasonal variations in physiology and behavior.  相似文献   

15.
The pineal gland and its major output signal melatonin have been demonstrated to play a central role in the seasonal organization of the ruin lizard Podarcis sicula. Seasonal variations in the amplitude of the nocturnal melatonin signal, with high values in spring as compared to low values in summer and autumn, have been found in vivo. The authors examined whether the pineal gland of the ruin lizard contains autonomous circadian oscillators controlling melatonin synthesis and whether previously described seasonal variations of in vivo melatonin production can also be found in isolated cultured pineal glands obtained from ruin lizards in summer and winter. In vitro melatonin release from isolated pineal glands of the ruin lizard persisted for 4 days in constant conditions. Cultured explanted pineal glands obtained from animals in winter and summer showed similar circadian rhythms of melatonin release, characterized by damping of the amplitude of the melatonin rhythm. Although different photoperiodic conditions were imposed on ruin lizards before explantation of pineal glands, the authors did not find any indication for corresponding differences in the duration of elevated melatonin in vitro. Differences were found in the amplitude of in vitro melatonin production in light/dark conditions and, to a lesser degree, in constant conditions. The presence of a circadian melatonin rhythm in vitro in winter, although such a rhythm is absent in vivo in winter, suggests that pineal melatonin production is influenced by an extrapineal oscillator in the intact animal that may either positively or negatively modulate melatonin production in summer and winter, respectively.  相似文献   

16.
Summary The role of the hormone melatonin in the circadian system of pigeons (Columba livia) was investigated. Using an automatic infusion system, melatoni at physiological levels was delivered for 10 h each day to cannulated, pinealectomized (P-X) pigeons in constant darkness. These cyclic infusions of melatonin entrained feeding rhythms in P-X pigeons while vehicle infusions were ineffective entraining agents. When the retinae of P-X pigeons were removed (E-X), feeding rhythms were abolished in constant darkness. When cyclic melatonin infusions were delivered to these birds (E-X and P-X), feeding rhythmicity was restored whereas vehicle infusions alone did not restore rhythmicity. When melatonin infusions were terminated in E-X/P-X pigeons, feeding rhythms persisted for several days but eventually decayed. Blood melatonin levels were measured in both P-X and E-X/P-X birds infused cyclically with exogenous melatonin and were found to be within the physiological range both in level and pattern. These results strongly suggest that endogenous melatonin, released by the pineal gland and the retinae, regulates the timing of feeding rhythms by entraining other oscillators in the circadian system of the pigeon.Abbreviations P-X pinealectomized - E-X bilaterally enucleated - T period of infusion cycle - LD light: dark cycle - DD constant darkness  相似文献   

17.
Crossbred ewes exposed to long days for 46 months prior to photoperiod reversal showed no alteration in the duration or amplitude of the circulating melatonin peak between 24 and 46 months of continuous long day exposure. By 3 months after photoreversal to short days, both the amplitude and duration of the peak had adapted to the new scotophase. In short day treated ewes, the melatonin peak was abolished by 46 but not 24 months of short day exposure, and was not fully restored in all ewes 3 months after photoreversal. Mean prolactin levels over 24 h remained high up to 46 months of long day treatment, and declined 3 months after short day exposure. Conversely, mean prolactin levels remained low up to 46 months of short day treatment, increasing 3 months after exposure to long days. Thus: (i) depletion of the melatonin-synthesizing capability of the ovine pineal gland by prolonged exposure to long nights is not completely reversed after 3 months of continuous long day exposure, and (ii) a nocturnal melatonin peak is not essential for maintenance of plasma prolactin levels under these conditions.Special issue dedicated to Dr. Lawrence Austin.  相似文献   

18.
In many seasonally breeding rodents, reproduction and metabolism are activated by long summer days (LD) and inhibited by short winter days (SD). After several months of SD, animals become refractory to this inhibitory photoperiod and spontaneously revert to LD-like physiology. The suprachiasmatic nuclei (SCN) house the primary circadian oscillator in mammals. Seasonal changes in photic input to this structure control many annual physiological rhythms via SCN-regulated pineal melatonin secretion, which provides an internal endocrine signal representing photoperiod. We compared LD- and SD-housed animals and show that the waveform of SCN expression for three circadian clock genes (Per1, Per2, and Cry2) is modified by photoperiod. In SD-refractory (SD-R) animals, SCN and melatonin rhythms remain locked to SD, reflecting ambient photoperiod, despite LD-like physiology. In peripheral oscillators, Per1 and Dbp rhythms are also modified by photoperiod but, in contrast to the SCN, revert to LD-like, high-amplitude rhythms in SD-R animals. Our data suggest that circadian oscillators in peripheral organs participate in photoperiodic time measurement in seasonal mammals; however, circadian oscillators operate differently in the SCN. The clear dissociation between SCN and peripheral oscillators in refractory animals implicates intermediate factor(s), not directly driven by the SCN or melatonin, in entrainment of peripheral clocks.  相似文献   

19.
Variations in pineal melatonin content throughout a 24-hour period and during different phases of the hibernation bout cycle were studied in the golden-mantled ground squirrel (Spermophilus lateralis). In addition to pineal melatonin, the circadian variation in the activities of pineal N-acetyltransferase (NAT) and hydroxyindole-O-methyltransferase (HIOMT) were also investigated in summer animals maintained at 22 +/- 2 degrees C, on a light:dark (L:D) schedule of 12:12 hr for 1 month (lights on at 08.00 hr). Pineal glands were collected from six animals in each group at 1200, 1600, 2000, 2400, 0200, 0400, and 0800 hr. Changes in pineal melatonin content during the hibernation bout cycle were investigated in ground squirrels housed at 4 +/- .05 degrees C in relative darkness (1.9-3.4 lux; 10:14 LD). Pineal glands were obtained between 12:00 and 18:00 hr from 30 animals during one of three phases of the cycle (deep hibernation, euthermic interbout, and entrance into hibernation). Pineal melatonin was also measured for comparison in six winter euthermic animals that were housed at 22 +/- 2 degrees C, on a L:D schedule of 10:14 hr. Melatonin was measured in individual pineal glands by radioimmunoassay. The daily melatonin rhythm in S. lateralis was characterized by a marked increase in pineal melatonin during the dark phase, in which peak nighttime values were nearly 20-fold greater than daytime basal levels. The daily rhythm for NAT activity paralleled the changes in melatonin, showing a peak activity at 0200 hr that was 45 times greater than mean daytime values.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The endogenous circadian rhythm of melatonin in mammals provides information regarding the resetting response of the mammalian circadian timing system in response to the changes in light dark cycle. Photoperiodic changes are reported to have acute and chronic effect on melatonin rhythm. Our aim in present experiment was to study the effect of single light pulse of low intensity on the circadian variation of melatonin in Indian palm squirrel. A short pulse of 5min was given to the animals at 22:55 h on day 16th in natural photoperiodic condition of long day length (LD ~ 13.55:10.05) and melatonin levels were estimated at every 4-h interval on ZT scale on day 17th (DD). Observations suggest that the light pulse given on day 16th suppressed the melatonin level on day 17th (DD). Besides this, it was also found that there was phase delay in the peak value of melatonin. Further, we tested the ability of single melatonin injection on the light pulse induced phase shift of acrophase of melatonin in this species F. pennanti. We injected the single physiological dose of melatonin (25 microgram/100 g body wt.) just 5 min prior to the commencement of light pulse (22:50 h) on day 16 and melatonin levels were estimated on day 17th as above. Injection of melatonin prior to light pulse altered the suppressing and phase shifting effect of light in terms of peak concentration of melatonin in squirrels. Above data may lead us to conclude that the biological clock mechanism controlling circadian rhythm of melatonin in this rodent is in response to the phase shifting effect of light and acute melatonin treatment. Further, we may suggest that single melatonin injection has the capability to entrain melatonin rhythm but a dose dependent study is required to facilitate the suggestion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号