首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
The neurodegenerative disorder spinocerebellar ataxia 12 (SCA12) is caused by CAG repeat expansion in the non-coding region of the PPP2R2B gene. PPP2R2B encodes Bbeta1 and Bbeta2, alternatively spliced and neuron-specific regulatory subunits of the protein phosphatase 2A (PP2A) holoenzyme. We show here that in PC12 cells and hippocampal neurons, cell stressors induced a rapid translocation of PP2A/Bbeta2 to mitochondria to promote apoptosis. Conversely, silencing of PP2A/Bbeta2 protected hippocampal neurons against free radical-mediated, excitotoxic, and ischemic insults. Evidence is accumulating that the mitochondrial fission/fusion equilibrium is an important determinant of cell survival. Accordingly, we found that Bbeta2 expression induces mitochondrial fragmentation, whereas Bbeta2 silencing or inhibition resulted in mitochondrial elongation. Based on epistasis experiments involving Bcl2 and core components of the mitochondrial fission machinery (Fis1 and dynamin-related protein 1), mitochondrial fragmentation occurs upstream of apoptosis and is both necessary and sufficient for hippocampal neuron death. Our data provide the first example of a proapoptotic phosphatase that predisposes to neuronal death by promoting mitochondrial division and point to a possible imbalance of the mitochondrial morphogenetic equilibrium in the pathogenesis of SCA12.  相似文献   

2.
Heterotrimeric protein phosphatase 2A (PP2A) is a major Ser/Thr phosphatase composed of catalytic, structural, and regulatory subunits. Here, we characterize Bbeta2, a novel splice variant of the neuronal Bbeta regulatory subunit with a unique N-terminal tail. Bbeta2 is expressed predominantly in forebrain areas, and PP2A holoenzymes containing Bbeta2 are about 10-fold less abundant than those containing the Bbeta1 (previously Bbeta) isoform. Bbeta2 mRNA is dramatically induced postnatally and in response to neuronal differentiation of a hippocampal progenitor cell line. The divergent N terminus of Bbeta2 does not affect phosphatase activity but encodes a subcellular targeting signal. Bbeta2, but not Bbeta1 or an N-terminal truncation mutant, colocalizes with mitochondria in neuronal PC12 cells. Moreover, the Bbeta2 N-terminal tail is sufficient to target green fluorescent protein to this organelle. Inducible or transient expression of Bbeta2, but neither Bbeta1, Bgamma, nor a Bbeta2 mutant defective in holoenzyme formation, accelerates apoptosis in response to growth factor deprivation. Thus, alternative splicing of a mitochondrial localization signal generates a PP2A holoenzyme involved in neuronal survival signaling.  相似文献   

3.
Protein serine/threonine phosphatase (PP) 2A is a ubiquitous enzyme with pleiotropic functions. Trimeric PP2A consists of a structural A subunit, a catalytic C subunit, and a variable regulatory subunit. Variable subunits (B, B', and B" families) dictate PP2A substrate specificity and subcellular localization. B-family subunits contain seven WD repeats predicted to fold into a beta-propeller structure. We carried out mutagenesis of Bgamma to identify domains important for association with A and C subunits in vivo. Several internal deletions in Bgamma abolished coimmunoprecipitation of A and C subunits expressed in COS-M6 cells. In contrast, small N- and C-terminal Bgamma deletions had no effect on incorporation into the PP2A heterotrimer. Thus, holoenzyme association of B-family subunits requires multiple, precisely aligned contacts within a core beta-propeller domain. Charge-reversal mutagenesis of Bgamma identified a cluster of conserved critical residues in Bgamma WD repeats 3 and 4. Acidic substitution of paired basic residues in Bgamma (RR165EE) abolished association with wild-type A and C subunits, while fostering incorporation of Bgamma into a PP2A heterotrimer containing an A subunit with an opposite charge-reversal mutation (EE100RR). Thus, binding of A and B subunits requires electrostatic interactions between conserved pairs of glutamates and arginines. By expressing complementary charge-reversal mutants in neuronal PC6-3 cells, we further show that holoenzyme incorporation protects Bgamma from rapid degradation by the ubiquitin/proteasome pathway.  相似文献   

4.
Protein phosphatase 2A (PP2A) holoenzyme is a heterotrimeric complex, consisting of A, B and C subunits. The catalytic subunit PP2A-C (microtubule star/mts) binds to the C-terminal part of the scaffold protein PP2A-A (PP2A-29B). In Drosophila, there are three different forms of B subunits (widerborst/wdb, twins/tws and PP2A-B'), which determine the subcellular localization and substrate specificity of the holoenzyme. Previous studies demonstrated that PP2A is involved in the control of TOR-dependent autophagy both in yeast and mammals. Furthermore, in Drosophila, wdb genetically interacts with the PtdIns3K/PTEN/Akt signaling cascade, which is a main upstream regulatory system of dTOR. Here we demonstrate that in Drosophila, two different PP2A complexes (containing B' or wdb subunit) play essential roles in the regulation of starvation-induced autophagy. The PP2A-A/wdb/C complex acts upstream of dTOR, whereas the PP2A-A/B'/C complex functions as a target of dTOR and may regulate the elongation of autophagosomes and their subsequent fusion with lysosomes. We also identified three Drosophila Atg orthologs (Atg14, Atg17 and Atg101), which represent potential targets of the PP2A-A/B'/C complex during autophagy.  相似文献   

5.
Sphingosine kinase 1 (SK1) is an important regulator of cellular signalling that has gained recent attention as a potential target for anti-cancer therapies. SK1 activity, subcellular localization and oncogenic function are regulated by phosphorylation and dephosphorylation at Ser225. ERK1/2 have been identified as the protein kinases responsible for phosphorylation and activation of SK1. Conversely, dephosphorylation and deactivation of SK1 occurs by protein phosphatase 2A (PP2A). Active PP2A, however, is a heterotrimer, composed of tightly associated catalytic and structural subunits that can interact with an array of regulatory subunits, which are critical for determining holoenzyme substrate specificity and subcellular localization. Thus, PP2A represents a large family of holoenzyme complexes with different activities and diverse substrate specificities. To date the regulatory subunit essential for targeting PP2A to SK1 has remained undefined. Here, we demonstrate a critical role for the B'α (B56α/PR61α/PPP2R5A) regulatory subunit of PP2A in SK1 dephosphorylation. B'α was found to interact with the c-terminus of SK1, and reduce SK1 phosphorylation when overexpressed, while having no effect on upstream ERK1/2 activation. siRNA-mediated knockdown of B'α increased SK1 phosphorylation, activity and membrane localization of endogenous SK1. Furthermore, overexpression of B'α blocked agonist-induced translocation of SK1 to the plasma membrane and abrogated SK1-induced neoplastic transformation of NIH3T3 fibroblasts. Thus, the PP2A-B'α holoenzyme appears to function as an important endogenous regulator of SK1.  相似文献   

6.
Cyclin G2, together with cyclin G1 and cyclin I, defines a novel cyclin family expressed in terminally differentiated tissues including brain and muscle. Cyclin G2 expression is up-regulated as cells undergo cell cycle arrest or apoptosis in response to inhibitory stimuli independent of p53 (Horne, M., Donaldson, K., Goolsby, G., Tran, D., Mulheisen, M., Hell, J. and Wahl, A. (1997) J. Biol. Chem. 272, 12650-12661). We tested the hypothesis that cyclin G2 may be a negative regulator of cell cycle progression and found that ectopic expression of cyclin G2 induces the formation of aberrant nuclei and cell cycle arrest in HEK293 and Chinese hamster ovary cells. Cyclin G2 is primarily partitioned to a detergent-resistant compartment, suggesting an association with cytoskeletal elements. We determined that cyclin G2 and its homolog cyclin G1 directly interact with the catalytic subunit of protein phosphatase 2A (PP2A). An okadaic acid-sensitive (<2 nm) phosphatase activity coprecipitates with endogenous and ectopic cyclin G2. We found that cyclin G2 also associates with various PP2A B' regulatory subunits, as previously shown for cyclin G1. The PP2A/A subunit is not detectable in cyclin G2-PP2A-B'-C complexes. Notably, cyclin G2 colocalizes with both PP2A/C and B' subunits in detergent-resistant cellular compartments, suggesting that these complexes form in living cells. The ability of cyclin G2 to inhibit cell cycle progression correlates with its ability to bind PP2A/B' and C subunits. Together, our findings suggest that cyclin G2-PP2A complexes inhibit cell cycle progression.  相似文献   

7.
The cAMP-dependent protein kinase (PKA) controls a large number of cellular functions. One critical PKA substrate in the brain and heart is the L-type Ca(2+) channel Ca(v)1.2, the activity of which is upregulated by PKA. The main PKA phosphorylation site is serine 1928 in the central pore forming alpha(1)1.2 subunit of Ca(v)1.2. PKA is bound to Ca(v)1.2 within a macromolecular signaling complex consisting of the beta(2) adrenergic receptor, trimeric G(s) protein, and adenylyl cyclase for fast, localized, and hence specific signaling [Davare, M. A., Avdonin, V., Hall, D. D., Peden, E. M., Buret, A., Weinberg, R. J., Horne, M. C., Hoshi, T., and Hell, J. W. (2001) Science 293, 98-101]. Protein phosphatase 2A (PP2A) serves to effectively balance serine 1928 phosphorylation by PKA through its association with the Ca(v)1.2 complex [Davare, M. A., Horne, M. C., and Hell, J. W. (2000) J. Biol. Chem. 275, 39710-39717]. We now show that native PP2A holoenzymes, as well as the catalytic subunit itself, bind to alpha(1)1.2 immediately downstream of serine 1928. Of those holoenzymes, only heterotrimeric PP2A containing B' and B' ' subunits copurify with alpha(1)1.2. Preventing the binding of PP2A by truncating alpha(1)1.2 28 residues downstream of serine 1928 hampers its dephosphorylation in intact cells. Our results demonstrate for the first time that a stable interaction of PP2A with Ca(v)1.2 is required for effective reversal of PKA-mediated channel phosphorylation. Accordingly, PKA as well as PP2A are constitutively associated with Ca(v)1.2 for its proper regulation by phosphorylation and dephosphorylation of serine 1928.  相似文献   

8.
A key regulator of many kinase cascades, heterotrimeric protein serine/threonine phosphatase 2A (PP2A), is composed of catalytic (C), scaffold (A), and variable regulatory subunits (B, B', B' gene families). In neuronal PC12 cells, PP2A acts predominantly as a gatekeeper of extracellular signal-regulated kinase (ERK) activity, as shown by inducible RNA interference of the Aalpha scaffolding subunit and PP2A inhibition by okadaic acid. Although okadaic acid potentiates Akt/protein kinase B and ERK phosphorylation in response to epidermal, basic fibroblast, or nerve growth factor, silencing of Aalpha paradoxically has the opposite effect. Epidermal growth factor receptor Tyr phosphorylation was unchanged following Aalpha knockdown, suggesting that chronic Akt and ERK hyperphosphorylation leads to compensatory down-regulation of signaling molecules upstream of Ras and blunted growth factor responses. Inducible exchange of wild-type Aalpha with a mutant with selective B' subunit binding deficiency implicated PP2A/B' heterotrimers as Akt modulators. Conversely, silencing of the B-family regulatory subunits Balpha and Bdelta led to hyperactivation of ERK stimulated by constitutively active MEK1. In vitro dephosphorylation assays further support a role for Balpha and Bdelta in targeting the PP2A heterotrimer to dephosphorylate and inactivate ERKs. Thus, receptor tyrosine kinase signaling cascades leading to Akt and ERK activation are modulated by PP2A holoenzymes with distinct regulatory properties.  相似文献   

9.
Structure of the protein phosphatase 2A holoenzyme   总被引:13,自引:0,他引:13  
Xu Y  Xing Y  Chen Y  Chao Y  Lin Z  Fan E  Yu JW  Strack S  Jeffrey PD  Shi Y 《Cell》2006,127(6):1239-1251
Protein Phosphatase 2A (PP2A) plays an essential role in many aspects of cellular physiology. The PP2A holoenzyme consists of a heterodimeric core enzyme, which comprises a scaffolding subunit and a catalytic subunit, and a variable regulatory subunit. Here we report the crystal structure of the heterotrimeric PP2A holoenzyme involving the regulatory subunit B'/B56/PR61. Surprisingly, the B'/PR61 subunit has a HEAT-like (huntingtin-elongation-A subunit-TOR-like) repeat structure, similar to that of the scaffolding subunit. The regulatory B'/B56/PR61 subunit simultaneously interacts with the catalytic subunit as well as the conserved ridge of the scaffolding subunit. The carboxyterminus of the catalytic subunit recognizes a surface groove at the interface between the B'/B56/PR61 subunit and the scaffolding subunit. Compared to the scaffolding subunit in the PP2A core enzyme, formation of the holoenzyme forces the scaffolding subunit to undergo pronounced conformational rearrangements. This structure reveals significant ramifications for understanding the function and regulation of PP2A.  相似文献   

10.
Protein serine/threonine phosphatase 2A (PP2A) is a multifunctional regulator of cellular signaling. Variable regulatory subunits associate with a core dimer of scaffolding and catalytic subunits and are postulated to dictate substrate specificity and subcellular location of the heterotrimeric PP2A holoenzyme. The role of brain-specific regulatory subunits in neuronal differentiation and signaling was investigated in the PC6-3 subline of PC12 cells. Endogenous Bbeta, Bgamma, and B'beta protein expression was induced during nerve growth factor (NGF)-mediated neuronal differentiation. Transient expression of Bgamma, but not other PP2A regulatory subunits, facilitated neurite outgrowth in the absence and presence of NGF. Tetracycline-inducible expression of Bgamma caused growth arrest and neurofilament expression, further evidence that PP2A/Bgamma can promote differentiation. In PC6-3 cells, but not non-neuronal cell lines, Bgamma specifically promoted long lasting activation of the mitogen-activated protein (MAP) kinase cascade, a key mediator of neuronal differentiation. Pharmacological and dominant-negative inhibition and kinase assays indicate that Bgamma promotes neuritogenesis by stimulating the MAP kinase cascade downstream of the TrkA NGF receptor but upstream or at the level of the B-Raf kinase. Mutational analyses demonstrate that the divergent N terminus is critical for Bgamma activity. These studies implicate PP2A/Bgamma as a positive regulator of MAP kinase signaling in neurons.  相似文献   

11.
Strong evidence has indicated that protein phosphatase 2A (PP2A) is a tumor suppressor, but a mouse model for testing the tumor suppressor activity was missing. The most abundant forms of trimeric PP2A holoenzyme consist of the scaffolding Aα subunit, one of several regulatory B subunits, and the catalytic Cα subunit. Aα mutations were discovered in a variety of human carcinomas. All carcinoma-associated mutant Aα subunits are defective in binding the B or B and C subunits. Here we describe two knock-in mice expressing cancer-associated Aα point mutants defective in binding B' subunits, one knockout mouse expressing truncated Aα defective in B and C subunit binding, and a floxed mouse for generating conditional Aα knockouts. We found that the cancer-associated Aα mutations increased the incidence of cancer by 50 to 60% in lungs of FVB mice treated with benzopyrene, demonstrating that PP2A acts as a tumor suppressor. We show that the effect of Aα mutation on cancer incidence is dependent on the tumor suppressor p53. The finding that the Aα mutation E64D, which was detected in a human lung carcinoma, increases the lung cancer incidence in mice suggests that this mutation also played a role in the development of the carcinoma in which it was discovered.  相似文献   

12.
Kim MI  Park SW  Yu SH  Cho HS  Ha HJ  Hwang I  Pai HS 《Molecules and cells》2001,11(1):110-114
The NeIF2Bbeta cDNA encoding beta-subunit of the translation initiation factor 2B (eIF2B-beta) was identified from Nicotiana tabacum through protein interaction with PRK1, a reproductive-organ-specific receptor-like kinase (Park et al., 2000). The eIF2B is a guanine nucleotide-exchange protein that consists of five subunits, which function in the regulation of translation in eukaryotic cells. The NeIF2Bbeta that shows a high homology in the amino acid sequence with other beta-subunits also exhibits sequence similarity to a and delta subunits of eIF2B from yeast and animals. The NeIF2Bbeta gene was expressed in all of the tissues examined, but the mRNA level was higher in reproductive tissues than in vegetative tissues. During anther development, the NeIF2Bbeta mRNA was detected in all stages with a slightly higher level in the earliest stage. The NeIF2Bbeta-GFP fusion protein was mainly localized in the cytosol.  相似文献   

13.
The serine/threonine protein phosphatase (PP2A) is a trimeric holoenzyme that plays an integral role in the regulation of a number of major signaling pathways whose deregulation can contribute to cancer. The specificity and activity of PP2A are highly regulated through the interaction of a family of regulatory B subunits with the substrates. Accumulating evidence indicates that PP2A acts as a tumor suppressor. In this review we summarize the known effects of specific PP2A holoenzymes and their roles in cancer relevant pathways. In particular we highlight PP2A function in the regulation of MAPK and Wnt signaling.  相似文献   

14.
Protein phosphatase type 2A (PP2A) is a major Ser/Thr phosphatase involved in several cellular signal transduction pathways. In this review, we will focus on recent progress concerning the role of PP2A in apoptotic signalling. Since PP2A activates pro-apoptotic and inhibits anti-apoptotic proteins of the Bcl-2 family, we conclude that PP2A has a positive regulatory function in apoptosis. However, in Drosophila, a specific subset of the PP2A holoenzyme family, containing B'/PR61 as third regulatory subunit, is inhibitory for apoptosis, suggesting different regulatory mechanisms and substrates in different species. Moreover, PP2A acts not only upstream as a regulator of the apoptotic signal transduction pathway but also downstream as a substrate of effector caspases. Hence, PP2A is involved in the regulation as well as in the cellular response of apoptosis. Probably, various PP2A holoenzymes with distinct regulatory subunits specifically target different apoptotic substrates. This could explain the implication of PP2A at several levels of the apoptotic signal transduction pathway. Finally, some viral proteins such as adenovirus E4orf4 and simian virus small t target PP2A to alter its activity, resulting in induction of apoptosis as a regulatory mechanism to enhance virus spread.  相似文献   

15.
Protein phosphatase 2A (PP2A) holoenzyme is composed of a catalytic subunit, C, and two regulatory subunits, A and B. The A subunit is rod shaped and consists of 15 nonidentical repeats. According to our previous model, the B subunit binds to repeats 1 through 10 and the C subunit binds to repeats 11 through 15 of the A subunit. Another form of PP2A, core enzyme, is composed only of subunits A and C. It is generally believed that core enzyme does not exist in cells but is an artifact of enzyme purification. To study the structure and relative abundance of different forms of PP2A, we generated monoclonal antibodies against the native A subunit. Two antibodies, 5H4 and 1A12, recognized epitopes in repeat 1 near the N terminus and immunoprecipitated free A subunit and core enzyme but not holoenzyme. Another antibody, 6G3, recognized an epitope in repeat 15 at the C terminus and precipitated only the free A subunit. Monoclonal antibodies against a peptide corresponding to the N-terminal 11 amino acids of the A alpha subunit (designated 6F9) precipitated free A subunit, core enzyme, and holoenzyme. 6F9, but not 5H4, recognized holoenzymes containing either B, B', or B" subunits. These results demonstrate that B subunits from three unrelated gene families all bind to repeat 1 of the A subunit, and the results confirm and extend our model of the holoenzyme. By sequential immunoprecipitations with 5H4 or 1A12 followed by 6F9, core enzyme and holoenzyme in cytoplasmic extracts from 10T1/2 cells were completely separated and they exhibited the expected specificities towards phosphorylase a and retinoblastoma peptide as substrates. Quantitative analysis showed that under conditions which minimized proteolysis and dissociation of holoenzyme, core enzyme represented at least one-third of the total PP2A. We conclude that core enzyme is an abundant form in cells rather than an artifact of isolation. The biological implications of this finding are discussed.  相似文献   

16.
The predominant forms of protein phosphatase 2A (PP2A), one of the major Ser/Thr phosphatases, are dimers of catalytic (C) and scaffolding (A) subunits and trimers with an additional variable regulatory subunit. In mammals, catalytic and scaffolding subunits are encoded by two genes each (alpha/beta), whereas three gene families (B, B', and B') with a total of 12 genes contribute PP2A regulatory subunits. We generated stable PC12 cell lines in which the major scaffolding Aalpha subunit can be knocked down by inducible RNA interference (RNAi) to study its role in cell viability. Aalpha RNAi decreased total PP2A activity as well as protein levels of C, B, and B' but not B' subunits. Inhibitor experiments indicate that monomeric C and B subunits are degraded by the proteosome. Knock-down of Aalpha triggered cell death by redundant apoptotic and non-apoptotic mechanisms because the inhibition of RNAi-associated caspase activation failed to stall cell death. PP2A holoenzymes positively regulate survival kinase signaling, because RNAi reduced basal and epidermal growth factor-stimulated Akt phosphorylation. RNAi-resistant Aalpha cDNAs rescued RNAi-induced loss of the C subunit, and Aalpha point mutants prevented regulatory subunit degradation as predicted from each mutant's binding specificity. In transient, stable, and stable-inducible rescue experiments, both wild-type Abeta and Aalpha mutants capable of binding to at least one family of regulatory subunits were able to delay Aalpha RNAi-induced death of PC12 cells. However, only the expression of wild-type Aalpha restored viability completely. Thus, heterotrimeric PP2A holoenzymes containing the Aalpha subunit and members of all three regulatory subunit families are necessary for mammalian cell viability.  相似文献   

17.
《Autophagy》2013,9(4):623-636
Protein phosphatase 2A (PP2A) holoenzyme is a heterotrimeric complex, consisting of A, B and C subunits. The catalytic subunit PP2A-C (microtubule star/mts) binds to the C-terminal part of the scaffold protein PP2A-A (PP2A-29B). In Drosophila, there are three different forms of B subunits (widerborst/wdb, twins/tws and PP2A-B'), which determine the subcellular localization and substrate specificity of the holoenzyme. Previous studies demonstrated that PP2A is involved in the control of TOR-dependent autophagy both in yeast and mammals. Furthermore, in Drosophila, wdb genetically interacts with the PtdIns3K/PTEN/Akt signaling cascade, which is a main upstream regulatory system of dTOR. Here we demonstrate that in Drosophila, two different PP2A complexes (containing B' or wdb subunit) play essential roles in the regulation of starvation-induced autophagy. The PP2A-A/wdb/C complex acts upstream of dTOR, whereas the PP2A-A/B'/C complex functions as a target of dTOR and may regulate the elongation of autophagosomes and their subsequent fusion with lysosomes. We also identified three Drosophila Atg orthologs (Atg14, Atg17 and Atg101), which represent potential targets of the PP2A-A/B'/C complex during autophagy.  相似文献   

18.
Cyclin G2 is an atypical cyclin that associates with active protein phosphatase 2A. Cyclin G2 gene expression correlates with cell cycle inhibition; it is significantly upregulated in response to DNA damage and diverse growth inhibitory stimuli, but repressed by mitogenic signals. Ectopic expression of cyclin G2 promotes cell cycle arrest, cyclin dependent kinase 2 inhibition and the formation of aberrant nuclei [Bennin, D. A., Don, A. S., Brake, T., McKenzie, J. L., Rosenbaum, H., Ortiz, L., DePaoli-Roach, A. A., and Horne, M. C. (2002). Cyclin G2 associates with protein phosphatase 2A catalytic and regulatory B' subunits in active complexes and induces nuclear aberrations and a G(1)/S-phase cell cycle arrest. J Biol Chem 277, 27449-67]. Here we report that endogenous cyclin G2 copurifies with centrosomes and microtubules (MT) and that ectopic G2 expression alters microtubule stability. We find exogenous and endogenous cyclin G2 present at microtubule organizing centers (MTOCs) where it colocalizes with centrosomal markers in a variety of cell lines. We previously reported that cyclin G2 forms complexes with active protein phosphatase 2A (PP2A) and colocalizes with PP2A in a detergent-resistant compartment. We now show that cyclin G2 and PP2A colocalize at MTOCs in transfected cells and that the endogenous proteins copurify with isolated centrosomes. Displacement of the endogenous centrosomal scaffolding protein AKAP450 that anchors PP2A at the centrosome resulted in the depletion of centrosomal cyclin G2. We find that ectopic expression of cyclin G2 induces microtubule bundling and resistance to depolymerization, inhibition of polymer regrowth from MTOCs and a p53-dependent cell cycle arrest. Furthermore, we determined that a 100 amino acid carboxy-terminal region of cyclin G2 is sufficient to both direct GFP localization to centrosomes and induce cell cycle inhibition. Colocalization of endogenous cyclin G2 with only one of two GFP-centrin-tagged centrioles, the mature centriole present at microtubule foci, indicates that cyclin G2 resides primarily on the mother centriole. Copurification of cyclin G2 and PP2A subunits with microtubules and centrosomes, together with the effects of ectopic cyclin G2 on cell cycle progression, nuclear morphology and microtubule growth and stability, suggests that cyclin G2 may modulate the cell cycle and cellular division processes through modulation of PP2A and centrosomal associated activities.  相似文献   

19.
PP2A holoenzyme assembly: in cauda venenum (the sting is in the tail)   总被引:3,自引:0,他引:3  
Protein phosphatase 2A (PP2A), a major phospho-serine/threonine phosphatase, is conserved throughout eukaryotes. It dephosphorylates a plethora of cellular proteins, including kinases and other signaling molecules involved in cell division, gene regulation, protein synthesis and cytoskeleton organization. PP2A enzymes typically exist as heterotrimers comprising catalytic C-, structural A- and regulatory B-type subunits. The B-type subunits function as targeting and substrate-specificity factors; hence, holoenzyme assembly with the appropriate B-type subunit is crucial for PP2A specificity and regulation. Recently, several biochemical and structural determinants have been described that affect PP2A holoenzyme assembly. Moreover, the effects of specific post-translational modifications of the C-terminal tail of the catalytic subunit indicate that a 'code' might regulate dynamic exchange of regulatory B-type subunits, thus affecting the specificity of PP2A.  相似文献   

20.
Carboxymethylation and phosphorylation of protein phosphatase 2A (PP2A) catalytic C subunit are evolutionary conserved mechanisms that critically control PP2A holoenzyme assembly and substrate specificity. Down-regulation of PP2A methylation and PP2A enzymes containing the B alpha regulatory subunit occur in Alzheimer's disease. In this study, we show that expressed wild-type and methylation- (L309 Delta) and phosphorylation- (T304D, T304A, Y307F, and Y307E) site mutants of PP2A C subunit differentially bind to B, B', and B'-type regulatory subunits in NIH 3T3 fibroblasts and neuro-2a (N2a) neuroblastoma cells. They also display distinct binding affinity for microtubules (MTs). Relative to controls, expression of the wild-type, T304A and Y307F C subunits in N2a cells promotes the accumulation of acetylated and detyrosinated MTs. However, expression of the Y307E, L309 Delta, and T304D mutants, which are impaired in their ability to associate with the B alpha subunit, induces their loss. Silencing of B alpha subunit in N2a and NIH 3T3 cells is sufficient to induce a similar breakdown of acetylated and detyrosinated MTs. It also confers increased sensitivity to nocodazole-induced MT depolymerization. Our findings suggest that changes in intracellular PP2A subunit composition can modulate MT dynamics. They support the hypothesis that reduced amounts of neuronal B alpha-containing PP2A heterotrimers contribute to MT destabilization in Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号