首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patterns of bird invasion are consistent with environmental filtering   总被引:1,自引:0,他引:1  
Predicting invasion potential has global significance for managing ecosystems as well as important theoretical implications for understanding community assembly. Phylogenetic relationships of introduced species to the extant community may be predictive of establishment success because of the opposing forces of competition/shared enemies (which should limit invasions by close relatives) versus environmental filtering (which should allow invasions by close relatives). We examine here the association between establishment success of introduced birds and their phylogenetic relatedness to the extant avifauna within three highly invaded regions (Florida, New Zealand, and Hawaii). Published information on both successful and failed introductions, as well as native species, was compiled for all three regions. We created a phylogeny for each avifauna including all native and introduced bird species. From the estimated branch lengths on these phylogenies, we calculated multiple measurements of relatedness between each introduced species and the extant avifauna. We used generalized linear models to test for an association between relatedness and establishment success. We found that close relatedness to the extant avifauna was significantly associated with increased establishment success for exotic birds both at the regional (Florida, Hawaii, New Zealand) and sub‐regional (islands within Hawaii) levels. Our results suggest that habitat filtering may be more important than interspecific competition in avian communities assembled under high rates of anthropogenic species introductions. This work also supports the utility of community phylogenetic methods in the study of vertebrate invasions.  相似文献   

2.
Extinction and endemism in the New Zealand avifauna   总被引:5,自引:0,他引:5  
Aim Species belonging to higher taxa endemic to islands are more likely to go extinct following human arrival. This selectivity may occur because more highly endemic island species possess features that make them uniquely vulnerable to impacts associated with human arrival, specifically: (1) restricted distribution (2) reduced predator escape response, including loss of flight, and (3) life history traits, such as large body mass, associated with greater susceptibility to hunting or habitat loss. This study aims to identify which of these features can explain the selective extinction of more highly endemic bird species in New Zealand. Location North and South Island, New Zealand. Methods Bird species breeding in New Zealand prior to human arrival were classified according to whether they became extinct or not during two periods of human settlement, prehistoric (post‐Maori but pre‐European arrival) and historic (post‐European arrival). We modelled the relationships between extinction probability, level of endemism and life history traits in both periods. Results The prehistoric extinction–endemism relationship can be explained entirely by the selective extinction of large‐bodied species, whereas the historic extinction–endemism relationship appears due to increased susceptibility to introduced predators resulting from the loss of predator escape responses, including loss of flight. Conclusions These features may explain extinction–endemism relationships more generally, given that human hunting and predator introductions are major impacts associated with human arrival on islands.  相似文献   

3.
Predicting future species extinctions from patterns of past extinctions or current threat status relies on the assumption that the taxonomic and biological selectivity of extinction is consistent through time. If the driving forces of extinction change through time, this assumption may be unrealistic. Testing the consistency of extinction patterns between the past and the present has been difficult, because the phylogenetically explicit methods used to model present-day extinction risk typically cannot be applied to the data from the fossil record. However, the detailed historical and fossil records of the New Zealand avifauna provide a unique opportunity to reconstruct a complete, large faunal assemblage for different periods in the past. Using the first complete phylogeny of all known native New Zealand bird species, both extant and extinct, we show how the taxonomic and phylogenetic selectivity of extinction, and biological correlates of extinction, change from the pre-human period through Polynesian and European occupation, to the present. These changes can be explained both by changes in primary threatening processes, and by the operation of extinction filter effects. The variable patterns of extinction through time may confound attempts to identify risk factors that apply across time periods, and to infer future species declines from past extinction patterns and current threat status.  相似文献   

4.
Summary Nest predation has been considered an important factor in the evolution of avian life histories: smaller clutches and shorter incubation and nestling periods are expected where nest predation has significant effects on reproductive success. Unlike the Australian avifauna, terrestrial New Zealand birds have evolved in the absence of reptilian and mammalian predators. Here we compare the reproductive strategies of terrestrial native New Zealand birds with those of their Australian sister taxa. In 11 of 14 comparisons, New Zealand birds were larger than their Australian relatives, but we did not find any significant differences in reproductive tactics between the two regions, a result inconsistent with the nest predation hypothesis. We discuss several reasons why this may be so. One possibility is that selection imposed on avian life history tactics by mammalian predators following the arrival of humans in New Zealand has led to strategies similar to those adopted in Australia.  相似文献   

5.
Worldwide decline in biodiversity during the Holocene has impeded a comprehensive understanding of pre-human biodiversity and biogeography. This is especially true on islands, because many recently extinct island taxa were morphologically unique, complicating assessment of their evolutionary relationships using morphology alone. The Caribbean remains an avian hotspot but was more diverse before human arrival in the Holocene. Among the recently extinct lineages is the enigmatic genus Nesotrochis, comprising three flightless species. Based on morphology, Nesotrochis has been considered an aberrant rail (Rallidae) or related to flufftails (Sarothruridae). We recovered a nearly complete mitochondrial genome of Nesotrochis steganinos from fossils, discovering that it is not a rallid but instead is sister to Sarothruridae, volant birds now restricted to Africa and New Guinea, and the recently extinct, flightless Aptornithidae of New Zealand. This result suggests a widespread or highly dispersive most recent common ancestor of the group. Prior to human settlement, the Caribbean avifauna had a far more cosmopolitan origin than is evident from extant species.  相似文献   

6.
Holocene fossils document the extinction of hundreds of bird species on Pacific islands during prehistoric human occupation. Human hunting is implicated in these extinctions, but the impact of hunting is difficult to disentangle from the effects of other changes induced by humans, including habitat destruction and the introduction of other mammalian predators. Here, we use data from bones collected at a natural sand dune site and associated archaeological middens in New Zealand to show that, having controlled for differences in body mass and family membership (and hence for variation in life-history traits related to population growth rate), birds that were more intensively hunted by prehistoric humans had a higher probability of extinction. This result cannot be attributed to preservation biases and provides clear evidence that selective hunting contributed significantly to prehistoric bird extinctions at this site.  相似文献   

7.
The extinction of large vertebrates in the last few millennia has left a legacy of evolutionary anachronisms. Among these are plant structural defences that persist long after the extinction of the browsers. A peculiar, and controversial, example is a suite of traits common in divaricate (wide-angled branching) plants from New Zealand. Divaricate architecture has been interpreted as an adaptive response to cold climates or an anachronistic defence against the extinct moas. Madagascar, a larger tropical island, also had a fauna of large flightless birds, the elephant birds. If these extinct ratites selected for similar plant defences, we expected to find convergent features between New Zealand and Malagasy plants, despite their very different climates. We searched the southern thickets of Madagascar for plants with putative anti-ratite defences and scored candidate species for a number of traits common to many New Zealand divaricates. We found many Malagasy species in 25 families and 36 genera shared the same suite of traits, the 'wire plant' syndrome, as divaricates in New Zealand that resist ratite browsing. Neither ecologically, nor phylogenetically, matched species from South Africa shared these traits. Malagasy wire plants differ from many New Zealand divaricates in lacking the distinctive concentration of leaves in the interior of shrubs. We suggest that New Zealand divaricates have a unique amalgam of traits that acted as defences and also confer tolerance to cold. We conclude that many woody species in the thickets of southern Madagascar share, with New Zealand, anachronistic structural defences against large extinct bird browsers.  相似文献   

8.
Flightless birds were once the largest and heaviest terrestrial fauna on many archipelagos around the world. Robust approaches for estimating their population parameters are essential for understanding prehistoric insular ecosystems and extinction processes. Body mass and population density are negatively related for extant flightless bird species, providing a method for quantifying densities and population sizes of extinct flightless species. Here we assemble an updated global data set of body mass and population densities for extant flightless birds and estimate the relationship between these variables. We use generalised least squares models that account for phylogenetic relatedness and incorporate the effects of limiting factors (e.g. habitat suitability) on population density. We demonstrate the applicability of this allometric relationship to extinct species by estimating densities for each of the nine species of moa (Dinornithiformes) and generating a combined spatially explicit map of total moa density across New Zealand. To compare our density estimates with those previously published, we summed individual species' abundances to generate a mean national density of 2.02–9.66 birds km−2 for low- and high-density scenarios, respectively. Our results reconcile the extreme bimodality of previous estimates (< 2 birds km−2 and > 10 birds km−2) and are comparable to contemporary densities of large herbivorous wild mammals introduced into New Zealand about 150 yr ago. The revised moa density has little effect on the harvest rates required to bring about extinction within 150–200 yr, indicating that rapid extinction was an inevitable response to human hunting, irrespective of the initial population of moa.  相似文献   

9.
《新西兰生态学杂志》2011,20(2):207-213
New Zealand's avifauna is characterised by a variety of endemic, often flightless, birds most of which are critically endangered. One of these, the takahe, is a large flightless rail which has been reduced to one population of 115 birds in its natural alpine habitat plus 52 others introduced on four small offshore islands. By contrast the takahe's closest extant relative, the pukeko, has been highly successful since its invasion of New Zealand within the past 800 years. This paper summarises results of a pilot study in which takahe eggs were cross-fostered to pukeko nests on Mana Island in order to increase the number of juveniles produced by each pair of takahe. Over two seasons, 67% (8/12) of the cross-fostered eggs hatched successfully with 25% (2/8) of the resulting young surviving to one year of age. These results were not significantly different from 42% (5/12) and 40% (2/5) hatching and fledging success of takahe-reared eggs from the same clutches. Low fledging success of cross-fostered chicks may reflect poor quality of takahe eggs per chicks rather than poor parental care by the pukeko foster parents, as hatching success of all parent-reared takahe eggs on Mana Island was only 22% (5/23) over the course of this research.  相似文献   

10.
We investigated factors affecting the success of 14 species of ungulates introduced to New Zealand around 1851-1926. The 11 successful species had a shorter maximum life span and were introduced in greater numbers than the three unsuccessful species. Because introduction effort was confounded with other life-history traits, we examined whether independent introductions of the same species were more likely to succeed when a greater number of individuals were introduced. For the six species with introductions that both succeeded and failed, successful introductions always involved an equal or greater number of individuals than unsuccessful introductions of the same species. For all independent introductions, there was a highly significant relationship between the number of individuals introduced and introduction success. When data for ungulate and bird introductions to New Zealand were combined, a variable categorizing species as ungulate or bird was a highly significant predictor of introduction success, after variation in introduction effort was controlled. For a given number of individuals introduced, ungulates were much more likely to succeed than birds.  相似文献   

11.
Through the continuing accumulation of fossil evidence, it is clear that the avifauna of the Hawaiian Islands underwent a large‐scale extinction event around the time of Polynesian arrival. A second wave of extinctions since European colonization has further altered this unique avifauna. Here I present the first systematic analysis of the factors characterizing the species that went extinct in each time period and those that survived in order to provide a clearer picture of the possible causal mechanisms. These analyses were based on mean body size, dietary and ecological information and phylogenetic lineage of all known indigenous, non‐migratory land and freshwater bird species of the five largest Hawaiian Islands. Extinct species were divided into ‘prehistoric’ and ‘historic’ extinction categories based on the timing of their last occurrence. A model of fossil preservation bias was also incorporated. I used regression trees to predict probability of prehistoric and historic extinction based on ecological variables. Prehistoric extinctions showed a strong bias toward larger body sizes and flightless, ground‐nesting species, even after accounting for preservation bias. Many small, specialized species, mostly granivores and frugivores, also disappeared, implicating a wide suite of human impacts including destruction of dry forest habitat. In contrast, the highest extinction rates in the historic period were in medium‐sized nectarivorous and insectivorous species. These differences result from different causal mechanisms underlying the two waves of extinction.  相似文献   

12.
Whereas previous studies have investigated correlates of extinction risk either at global or regional scales, our study explicitly models regional effects of anthropogenic threats and biological traits across the globe. Using phylogenetic comparative methods with a newly-updated supertree of 5020 extant mammals, we investigate the impact of species traits on extinction risk within each WWF ecoregion. Our analyses reveal strong geographical variation in the influence of traits on risk: notably, larger species are at higher risk only in tropical regions. We then relate these patterns to current and recent-historical human impacts across ecoregions using spatial modelling. The body–mass results apparently reflect historical declines of large species outside the tropics due to large-scale land conversion. Narrow-ranged and rare species tend to be at high risk in areas of high current human impacts. The interactions we describe between biological traits and anthropogenic threats increase understanding of the processes determining extinction risk.  相似文献   

13.
The evolutionary significance of spatial habitat gaps has been well recognized since Alfred Russel Wallace compared the faunas of Bali and Lombok. Gaps between islands influence population structuring of some species, and flightless birds are expected to show strong partitioning even where habitat gaps are narrow. We examined the population structure of the most numerous living flightless land bird in New Zealand, Weka (Gallirallus australis). We surveyed Weka and their feather lice in native and introduced populations using genetic data gathered from DNA sequences of mitochondrial genes and nuclear β‐fibrinogen and five microsatellite loci. We found low genetic diversity among extant Weka population samples. Two genetic clusters were evident in the mtDNA from Weka and their lice, but partitioning at nuclear loci was less abrupt. Many formerly recognized subspecies/species were not supported; instead, we infer one subspecies for each of the two main New Zealand islands. Although currently range restricted, North Island Weka have higher mtDNA diversity than the more wide‐ranging southern Weka. Mismatch and neutrality statistics indicate North Island Weka experienced rapid and recent population reduction, while South Island Weka display the signature of recent expansion. Similar haplotype data from a widespread flying relative of Weka and other New Zealand birds revealed instances of North Island—South Island partitioning associated with a narrow habitat gap (Cook Strait). However, contrasting patterns indicate priority effects and other ecological factors have a strong influence on spatial exchange at this scale.  相似文献   

14.
Body size trends in a Holocene island bird assemblage   总被引:1,自引:0,他引:1  
Despite the robust observation in macroecology that there are many small-bodied species, recent comparative studies have found little evidence for elevated net rates of diversification among small-bodied species within taxa. Here we examine the relationship between body size and species richness using the New Zealand land bird fauna, a well resolved palaeoecological Holocene assemblage. We test whether there is any evidence that net cladogenesis depended on body size in an assemblage prior to the impact of human-induced extinction. We also test whether net cladogenesis depends on the level at which taxa are endemic to New Zealand, to see whether there is evidence for bursts of cladogenesis following taxon establishment, and examine how the body sizes of New Zealand land birds relate to those in Australia, the most likely source pool for colonising taxa. Most New Zealand land bird species are small-bodied. We find no evidence, however, that this is due to higher net cladogenesis in small-bodied taxa. The body mass distributions of endemic and recent colonist species do not differ statistically, but recent colonists tend to be smaller-bodied than their closest endemic relative. This tendency is more marked for small-bodied than large-bodied taxa. More endemic taxa do not tend to be more species rich in New Zealand, although there is a positive relationship between level of endemism and species richness for forest taxa. The body mass distribution of New Zealand birds is very similar to that for Australia. Body mass does not dictate the likelihood that a family has colonised New Zealand from Australia, but the number of species in the family does: it is the species rich Australian families that have successfully colonised. We discuss the implications of these results for the evolution of body size distributions, and for the "island rule" of body size evolution on islands.  相似文献   

15.
Understanding how climatic and environmental changes, as well as human activities, induce changes in the distribution and population size of avian species refines our ability to predict future impacts on threatened species. Using multilocus genetic data, we show that the population of a threatened New Zealand endemic open-habitat specialist, the Black-fronted Tern Chlidonias albostriatus – in contrast to forest specialists – expanded during the last glacial period. The population has decreased subsequently despite the availability of extensive open habitat after human arrival to New Zealand. We conclude that population changes for open habitat specialists such as Black-fronted Terns in pre-human New Zealand were habitat-dependent, similar to Northern Hemisphere cold-adapted species, whereas post-human settlement populations were constrained by predators independent of habitat availability, similar to other island endemic species.  相似文献   

16.
Phillip Cassey 《Ecography》2001,24(4):413-420
Verbal models have hypothesized a relation between body size and the successful introduction of animal species. This relation is largely based on studies of intrinsic rate of increase in what have been termed "colonizing" species. From these studies it has been predicted that introduction success should be negatively correlated with body size across taxa but positively correlated within closely related taxa. T examine this relation for globally introduced land birds. Introduced land birds are. on average, larger bodied than extant land bird species. Across species, families, and higher family nodes, global introduction success is significantly related to decreasing body size. However, within taxa there is a significant positive relationship between introduction success and body size. I discuss possible explanations for the observed relations and conclude that an indirect but genuine relationship between the introduction success of land birds and their body size is currently the most plausible.  相似文献   

17.
Land‐cover and climate change are two main drivers of changes in species ranges. Yet, the majority of studies investigating the impacts of global change on biodiversity focus on one global change driver and usually use simulations to project biodiversity responses to future conditions. We conduct an empirical test of the relative and combined effects of land‐cover and climate change on species occurrence changes. Specifically, we examine whether observed local colonization and extinctions of North American birds between 1981–1985 and 2001–2005 are correlated with land‐cover and climate change and whether bird life history and ecological traits explain interspecific variation in observed occurrence changes. We fit logistic regression models to test the impact of physical land‐cover change, changes in net primary productivity, winter precipitation, mean summer temperature, and mean winter temperature on the probability of Ontario breeding bird local colonization and extinction. Models with climate change, land‐cover change, and the combination of these two drivers were the top ranked models of local colonization for 30%, 27%, and 29% of species, respectively. Conversely, models with climate change, land‐cover change, and the combination of these two drivers were the top ranked models of local extinction for 61%, 7%, and 9% of species, respectively. The quantitative impacts of land‐cover and climate change variables also vary among bird species. We then fit linear regression models to test whether the variation in regional colonization and extinction rate could be explained by mean body mass, migratory strategy, and habitat preference of birds. Overall, species traits were weakly correlated with heterogeneity in species occurrence changes. We provide empirical evidence showing that land‐cover change, climate change, and the combination of multiple global change drivers can differentially explain observed species local colonization and extinction.  相似文献   

18.
The moa (Dinornithiformes) are large to gigantic extinct terrestrial birds of New Zealand. Knowledge about niche partitioning, feeding mode and preference among moa species is limited, hampering palaeoecological reconstruction and evaluation of the impacts of their extinction on remnant native biota, or the viability of exotic species as proposed ecological ‘surrogates''. Here we apply three-dimensional finite-element analysis to compare the biomechanical performance of skulls from five of the six moa genera, and two extant ratites, to predict the range of moa feeding behaviours relative to each other and to living relatives. Mechanical performance during biting was compared using simulations of the birds clipping twigs based on muscle reconstruction of mummified moa remains. Other simulated food acquisition strategies included lateral shaking, pullback and dorsoventral movement of the skull. We found evidence for limited overlap in biomechanical performance between the extant emu (Dromaius novaehollandiae) and extinct upland moa (Megalapteryx didinus) based on similarities in mandibular stress distribution in two loading cases, but overall our findings suggest that moa species exploited their habitats in different ways, relative to both each other and extant ratites. The broad range of feeding strategies used by moa, as inferred from interspecific differences in biomechanical performance of the skull, provides insight into mechanisms that facilitated high diversities of these avian herbivores in prehistoric New Zealand.  相似文献   

19.
P. J. Moors 《Ibis》1983,125(2):137-154
Prior to human settlement the endemic New Zealand avifauna evolved in the absence of mammalian predators. Subsequently mustelids, rodents and feral cats have become established and frequently prey on birds and nests. It has been suggested that, because of their evolutionary history, the endemic birds are especially susceptible to such predators. In this paper predation by mustelids and rodents on the eggs and nestlings of eight species of native bird is compared with that on five species of introduced European passerine inhabiting the same lowland forest.
Final outcomes were known for 101 nests of native birds and 48 nests of introduced birds found during three breeding seasons. There was no significant difference between the two groups in frequency of predation. Native birds lost 70-1% of their nests to predators and introduced birds 64-6%. Most predations occurred during the egg stage. Clutch size did not influence frequency of predation, but brood size did for Fantails and introduced birds. Stoats and weasels were responsible for 77-9% of predations on native birds and 77-4% on introduced birds; corresponding percentages for rodents (principally ship rats) were 14-7% and 19-4%. Mustelids destroyed proportionately more nests with chicks than with eggs, whereas rodents did the reverse. Predation on both groups of birds was not influenced by their nesting habitat, the species of tree used for nesting, or the height and position of the nest. The vulnerability to introduced predators of native New Zealand birds is discussed in relation to the historical declines of many species, and also their life-history patterns.  相似文献   

20.

Question

Natural reforestation is an important component of climate mitigation and adaptation, but the ecological processes promoting or constraining it are poorly understood. In this study we employ a stand reconstruction approach (which uses ages of extant trees to estimate year of establishment for each individual tree) to test for general trait-based effects on tree species arrival order in post-agricultural forest successions.

Location

Naturally reforesting post-agricultural landscapes throughout New Zealand.

Methods

Ages were obtained for 2434 individuals spanning 30 tree species across a nationwide network of 128 plots in 14 naturally reforesting post-agricultural sites. These ages were used to calculate individual-level arrival times (relative to the oldest individual in each plot). We estimated species-level arrival times by fitting linear mixed-effects (LME) regressions (with species identity as the fixed effect, and plots nested within sites as the random effects) to individual arrival time data. We used back-casting (where arrival time data are used to document individual-level presence in plots through time) to track annual changes in species abundance and community-weighted mean (CWM) trait values. We used standardised major axis (SMA) regressions to examine the effect of traits related to resource use strategy, herbivory avoidance, seed dispersal and disturbance response on species-level arrival times. We used LME regressions to test for changes in CWM trait values with stand age.

Results

The earliest-arriving species had traits associated with herbivory avoidance, were abiotically dispersed and had short predicted dispersal distances. There was no evidence that traits linked to resource use strategy or disturbance response affected species arrival times. Every significant species-level relationship was recovered in community-level LME analyses.

Conclusions

Our findings suggest that mammalian herbivore control and enhancement of biotic (bird) seed dispersal may be key management interventions in realising the full climate mitigation and adaptation potential of natural reforestation in post-agricultural landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号