首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Damage caused by plant-parasitic nematodes (PPNs) represents significant losses in agriculture worldwide. Sustainable and non-agrochemical practices have been sought out for the last few years aiming the reduction of PPN outbreaks, as such practices represent less interference in the soil health. In addition, certain soils naturally show high levels of suppressiveness against nematodes. Natural suppressive soils do not allow PPN increment by a balance in soil biotic and abiotic conditions. Such soils must be better understood by which components are responsible for their natural suppressiveness. Hence, keeping, stimulating or and even creating suppressive conditions in agricultural rhizosphere has been studied and applied to reduce PPN populations. There are many aspects that implicate in soil suppressiveness against PPN, such as microbiota activities, organic matter amount, chemical composition and physical constitution. However, any of those conditions is a single driver in suppressive soils against PPN. In this context, we intend to bring up an overview concerning the natural occurrence of suppressive soils against the most devastating PPNs worldwide and discuss the means used to induce suppressiveness in agricultural fields by sustainable management practices.  相似文献   

2.
The goal of this study was to identify bacteria involved in soil suppressiveness against the plant-parasitic nematode Heterodera schachtii. Since H. schachtii cysts isolated from the suppressive soil can transfer this beneficial property to nonsuppressive soils, analysis of the cyst-associated microorganisms should lead to the identification of the causal organisms. Our experimental approach was to identify bacterial rRNA genes (rDNA) associated with H. schachtii cysts obtained from soil mixtures with various levels of suppressiveness. We hypothesized that we would be able to identify bacteria involved in the suppressiveness by correlating population shifts with differing levels of suppressiveness. Soil treatments containing different amounts of suppressive and fumigation-induced nonsuppressive soils exhibited various levels of suppressiveness after two nematode generations. The 10%-suppressive-soil treatment contained numbers of eggs per gram of soil similar to those of the 100%-suppressive-soil treatment, indicating that the suppressive factor(s) had been transferred. Bacterial rDNA associated with H. schachtii cysts were identified using a culture-independent method termed oligonucleotide fingerprinting of rRNA genes. Bacteria from five major taxonomic groups (Actinobacteria, Cytophaga-Flexibacter-Bacteroides, α-Proteobacteria, β-Proteobacteria, and γ-Proteobacteria) were identified. Three bacterial rDNA groups contained clones that were more prevalent in the highly suppressive soil treatments than in the less suppressive treatments, indicating a potential involvement in the H. schachtii suppressiveness. When these three groups were examined with specific PCR analyses performed on H. schachtii cysts that developed in soils treated with three biocidal compounds, only one bacterial rDNA group with moderate to high sequence identity to rDNA from several Rhizobium species and uncultured α-proteobacterial clones was consistently associated with the highly suppressive treatments. A quantitative PCR analysis confirmed the association of this Rhizobium-like rDNA group with the H. schachtii suppressiveness.  相似文献   

3.
Infectivity of second‐stage juvenile (J2) populations of Heterodera schachtii was assayed with radish.The numbers of J2 in three‐day‐old seedlings were proportional to the numbers of J2 in two differently textured soils.In a microplot trial with a known H.schachtii‐supprcssivc soil, half of the plots contained untreated suppressive soil, the other half contained the same soil, but methyl iodide‐fumigated and therefore conducive.Both soils were infested with cysts introducing the equivalents of 0, 30, 60 or 120 H.schachtii eggs g‐1 soil, kept moist for 2 months, and then planted to Swiss chard.The numbers of J2 in radish roots were proportional to the numbers of H.schachtii eggs introduced into the microplots, at a low level of detection in suppressive soil and at a high level in conducive soil.Growth of Swiss chard was not different at increasing infestation levels in suppressive soil, but growth was reduced in conducive soil proportionally to increasing nematode infestation level.  相似文献   

4.
In this article, we present the cloning of two CLAVATA3/ESR (CLE)-like genes, HsCLE1 and HsCLE2, from the beet cyst nematode Heterodera schachtii, a plant-parasitic cyst nematode with a relatively broad host range that includes the model plant Arabidopsis. CLEs are small secreted peptide ligands that play important roles in plant growth and development. By secreting peptide mimics of plant CLEs, the nematode can developmentally reprogramme root cells for the formation of unique feeding sites within host roots for its own benefit. Both HsCLE1 and HsCLE2 encode small secreted polypeptides with a conserved C-terminal CLE domain sharing highest similarity to Arabidopsis CLEs 1-7. Moreover, HsCLE2 contains a 12-amino-acid CLE motif that is identical to AtCLE5 and AtCLE6. Like all other plant and nematode CLEs identified to date, HsCLEs caused wuschel-like phenotypes when overexpressed in Arabidopsis, and this activity was abolished when the proteins were expressed without the CLE motif. HsCLEs could also function in planta without a signal peptide, highlighting the unique, yet conserved function of nematode CLE variable domains in trafficking CLE peptides for secretion. In a direct comparison of HsCLE2 overexpression phenotypes with those of AtCLE5 and AtCLE6, similar shoot and root phenotypes were observed. Exogenous application of 12-amino-acid synthetic peptides corresponding to the CLE motifs of HsCLEs and AtCLE5/6 suggests that the function of this class of CLEs may be subject to complex endogenous regulation. When seedlings were grown on high concentrations of peptide (10 μm), root growth was suppressed; however, when seedlings were grown on low concentrations of peptide (0.1 μm), root growth was stimulated. Together, these findings indicate that AtCLEs1-7 may be the target peptides mimicked by HsCLEs to promote parasitism.  相似文献   

5.
In this article, we present the cloning of Hscm1 , a gene for chorismate mutase (CM) from the beet cyst nematode Heterodera schachtii . CM is a key branch-point enzyme of the shikimate pathway, and secondary metabolites that arise from this pathway control developmental programmes and defence responses of the plant. By manipulating the plant's endogenous shikimate pathway, the nematode can influence the plant physiology for its own benefit. Hscm1 is a member of the CM gene family and is expressed during the pre-parasitic and parasitic stages of the nematode's life cycle. In situ mRNA hybridization reveals an expression pattern specific to the subventral and dorsal pharyngeal glands. The predicted protein has a signal peptide for secretion in addition to two domains. The N-terminal domain of the mature protein, which is only found in cyst nematodes, contains six conserved cysteine residues, which may reflect the importance of disulphide bond formation for protein stabilization. The C-terminal domain holds a single catalytic site and has similarity to secreted CMs of pathogenic bacteria, classifying HsCM1 as an AroQγ enzyme. The presumed catalytic residues are discussed in detail, and genetic complementation experiments indicate that the C-terminal domain is essential for enzyme activity. Finally, we show how the modular design of the protein is mirrored in the genomic sequence by the intron/exon organization, suggesting exon shuffling as a mechanism for the evolutionary assembly of this protein.  相似文献   

6.
Whole genome microarrays were used to study plant gene expression in mature Meloidogyne incognita -induced galls in Arabidopsis. We found 959 genes to be significantly differentially expressed, and two-thirds of these were down-regulated. Microarray results were confirmed by qRT-PCR. The temporal and spatial responses of four differentially expressed genes were analysed using GUS reporter plants following infection with M. incognita and the cyst nematode Heterodera schachtii . The ammonium transporter gene AtAMT1;2 was consistently and locally repressed in response to both nematodes at all developmental stages. The lateral organ boundary domain gene LBD41 showed up-regulation in the feeding sites of both nematode species, although there was variation in expression in saccate H. schachtii female feeding sites. Expression of an actin depolymerizing factor ADF3 and a lipid transfer protein was induced in feeding sites of both nematodes at the fusiform stage and this persisted in feeding sites of saccate M. incognita . These results contribute to the knowledge of how plant gene expression responds to parasitism by these nematodes as well as highlighting further differences in the mechanisms of development and maintenance of these feeding site structures.  相似文献   

7.
Three species of the section Procumbentes genus Beta, nine monosomic additions, and five translocation lines were tested for resistance to two Heterodera schachtii populations. Nematode population 129-v (129-virulent) was selected for virulence to resistance gene(s) transferred from chromosome 1 of Beta procumbens to the diploid resistant sugar beet KWS-NR1. This population is considered to be a pathotype. The unselected sib population 129-av (129-avirulent) was reared continuously on fodder rape, Brassica napus cv Velox. Monosomic additions with chromosome 1 from the three species of the section Procumbentes were susceptible to population 129-v, regardless of the origin of the alien chromosome. Translocations with a gene(s) for resistance from chromosome 7 of B. procumbens and B. webbiana were also susceptible to the pathotype. However, a monosomic addition with chromosome 7 of B. webbiana was resistant to population 129-v. The three wild beets of the section Procumbentes, Beta procumbens, Beta webbiana and Beta patellaris, also were highly resistant to the two populations. The results indicate the existence of just two different major genes for resistance to H. schachtii in the entire Procumbentes section.  相似文献   

8.
Abstract Fungal egg parasites isolated from eggs of the cyst nematode Heterodera avenae in Sweden were investigated with respect to their ability to infect cyst nematode eggs of H. schachtii in vitro. The infection was studied by interference phase contrast microscopy of whole cysts and of cryosections of cysts exposed to the fungi on agar plates.
Verticillium suchlasporium was the most effective parasite, infecting 53% of the nematode eggs, while V. chlamydosporium infected 12% of the eggs. The fungi Paecilomyces lilacinus, Cylindrocarpon destructans or Fusarium oxysporum did not parasitize nematode eggs; nor did Arthrobotrys oligospora , a nematode trapping fungus nor Penicillium viridicatum which served as a control fungus.
The ability of the fungi to infect eggs was correlated with their lytic enzyme activity. Fungi that readily infected eggs also showed chitinase activity and presence of proteolytic activity. The Verticillium species had an activity between 3.7 and 14.6 μmol N -acetyl-glucosamine per mg protein per hour (CU) while it was 4.5 CU or lower for P. lilacinus . Other isolates did not shown any chitinase activity.  相似文献   

9.
We report the isolation of five microsatellites loci from the sugar beet cyst nematode (Heterodera schachtii). Multilocus genotypes were obtained on individual larvae freshly emerged from cysts. Allelic diversity ranged from four to 27 among the five loci. The primers were tested for cross‐species amplification in six other species of phytoparasitic nematodes of the Heterodera genus. Those molecular markers will be used to study the genetic structure of this obligatory parasite and how it is affected by the use of resistant plants.  相似文献   

10.
11.
A vector for the constitutive expression of antisense to the conservative region of the 8H07 gene of the nematode H.schachtii dsRNA is constructed and a genetic transformation of rape plants is conducted by means of A. tumefaciens. Using molecular genetic methods, the presence of the vector expression of antinematode dsRNA in the genome of transgenic rape plants is shown, as well as the high level of their silencing activity is confirmed both in nematodes and in infected plants. In laboratory studies, a considerable increase in the tolerance of transgenic rape plants to the root parasitic nematode H. schachtii was shown for physiological signs.  相似文献   

12.
13.
Sedentary plant‐parasitic cyst nematodes are obligate biotrophs that infect the roots of their host plant. Their parasitism is based on the modification of root cells to form a hypermetabolic syncytium from which the nematodes draw their nutrients. The aim of this study was to identify nematode susceptibility genes in Arabidopsis thaliana and to characterize their roles in supporting the parasitism of Heterodera schachtii. By selecting genes that were most strongly upregulated in response to cyst nematode infection, we identified HIPP27 (HEAVY METAL‐ASSOCIATED ISOPRENYLATED PLANT PROTEIN 27) as a host susceptibility factor required for beet cyst nematode infection and development. Detailed expression analysis revealed that HIPP27 is a cytoplasmic protein and that HIPP27 is strongly expressed in leaves, young roots and nematode‐induced syncytia. Loss‐of‐function Arabidopsis hipp27 mutants exhibited severely reduced susceptibility to H. schachtii and abnormal starch accumulation in syncytial and peridermal plastids. Our results suggest that HIPP27 is a susceptibility gene in Arabidopsis whose loss of function reduces plant susceptibility to cyst nematode infection without increasing the susceptibility to other pathogens or negatively affecting the plant phenotype.  相似文献   

14.
Phloem unloading of both the fluorescent probe carboxyfluorescein (CF) and 14C-labeled solutes was induced in Arabidopsis thaliana L. roots by the parasitic nematode Heterodera schachtii Schmidt. Confocal laser scanning microscopy demonstrated that anomalous unloading of CF from the sieve element companion cell complexes occurred specifically into the syncytium, the nematode-induced feeding structure located within the stele of the root. From this syncytial complex of modified root cells, both fluorescent and radioactive labels were withdrawn by feeding nematodes. Movement of CF was unidirectional from the phloem to the syncytium. A range of low-molecular-weight fluorescent probes (including CF) microinjected into the syncytium stayed in this structure, demonstrating that it is symplastically isolated from the surrounding root tissue. The mechanism of unloading in this host-pathogen relationship therefore appears to be apoplastic. Our results provide unequivocal evidence that sedentary cyst-forming nematodes have direct access to phloem-derived solutes.  相似文献   

15.
16.
Sugar beet (Beta vulgaris L.) is highly susceptible to the beet cyst nematode (Heterodera schachtii Schm.). Three resistance genes originating from the wild beets B. procumbens (Hs1 pro-1) and B. webbiana (Hs1 web-1, Hs2 web-7) have been transferred to sugar beet via species hybridization. We describe the genetic localization of the nematode resistance genes in four different sugar beet lines using segregating F2 populations and RFLP markers from our current sugar beet linkage map. The mapping studies yielded a surprising result. Although the four parental lines carrying the wild beet translocations were not related to each other, the four genes mapped to the same locus in sugar beet independent of the original translocation event. Close linkage (0–4.6 cM) was found with marker loci at one end of linkage group IV. In two populations, RFLP loci showed segregation distortion due to gametic selection. For the first time, the non-randomness of the translocation process promoting gene transfer from the wild beet to the sugar beet is demonstrated. The data suggest that the resistance genes were incorporated into the sugar beet chromosomes by non-allelic homologous recombination. The finding that the different resistance genes are allelic will have major implications on future attempts to breed sugar beet combining the different resistance genes.  相似文献   

17.
The plant-parasitic cyst nematode Heterodera glycines requires a host plant to complete its life cycle, which involves hatching of infective juveniles that parasitize through root entry. A laboratory population of H. glycines grown on soybean, Glycine max, undergoes a sharp increase in maturity between 5 and 6 weeks in culture, as measured by the proportion of eggs containing well developed pre-hatch juveniles (late development eggs) versus eggs without visible juveniles (early development eggs). The median percent of eggs classified as late development, representing all samples taken from 4 to 7 weeks in culture, was 61%. For all samples taken up to 5 weeks, 80% scored below the median. In samples taken after 5 weeks, 15% scored below the median. This shift in population maturity was accompanied by a significant increase (P < 0.01) in the number of hatched juveniles present in each sample. There was also a significant increase (P < 0.02) in amount of FaRP-like peptide detected by specific ELISA. Total FaRP levels increased from 0.18 +/- 0.07 fMol FLRFamide equivalents per ng protein in early development eggs to 0.40 +/- 0.17 in late development eggs. The level remained high in hatched juveniles. HPLC/ELISA detected as many as nine potential FaRPs in H. glycines, two of which were specifically increased (P < 0.005) in hatched juveniles. The association of FaRPs with maturing eggs and the possible involvement of these neuropeptides with juvenile hatching and motility are discussed.  相似文献   

18.
Field and greenhouse experiments showed that yield losses of sugarbeet, Beta vulgaris, did not occur in soil infested with fewer than eight Heterodera schachtii eggs/g soil. However, larger population densities greatly reduced sugarbeet yield. In the field experiment, the yield in microplots inoculated with more than 64 eggs/g soil was less than 20% of yields in uninoculated microplots. Nevertheless, tolerance limits of 4 and 1.8 eggs/g soil, in greenhouse and field microplots, respectively, were derived by fitting the data with the equation y =m + (l - m)zP-T. Maximum rates of multiplication of 55 and more than 300, and equilibrium densities of 340 and 130 eggs/g soil, were estimated in greenhouse and field microplot tests, respectively.  相似文献   

19.
Foliar applications of ethyl 4-(methylthio)-m-tolyl isopropylphosphoramidate (phenamiphos) or S-methyl 1-(dimethylcarbamoyl)-N-[(methylcarbamoyl)oxy] thioformimidate (oxamyl) retarded infection of sugarbeets by the sugarbeet nematode, Heterodera schachtii under greenhouse conditions. Maximum nematode control was obtained when treatments were applied previous to, or at the time of, inoculation of plants with the nematode. Consecutive foliar applications inhibited nematode development, with four applications giving greatest inhibition of maturation. A treatment with either phenamiphos or oxamyl at 2,000 μg/ml (ppm) resulted in the greatest increase in plant growth, and 4,000 μg/ml gave the best nematode control. A treatment of 4,000 μg/ml of either phenamiphos or oxamyl was phytotoxic. However, this was due to container confinement of the chemical since phytotoxicity at this rate has not been observed under field conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号