首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have identified the RNA-binding protein Hermes in a screen for vegetally localized RNAs in Xenopus oocytes. The RNA localizes to the vegetal cortex through both the message transport organizer (METRO) and late pathways. Hermes mRNA and protein are both detected at the vegetal cortex of the oocyte; however, the protein is degraded within a several hour period during oocyte maturation. Injection of antisense morpholino oligonucleotides (HE-MO) against Hermes caused a precocious reduction in Hermes protein present during maturation and resulted in a phenotype characterized by cleavage defects in vegetal blastomeres. The phenotype can be partially rescued by injecting Hermes mRNA. These results demonstrate that the localized RNA-binding protein Hermes functions during oocyte maturation to regulate the cleavage of specific vegetally derived cell lineages. Hermes most likely performs its function by regulating the translation or processing of one or more target RNAs. This is an important mechanism by which the embryo can generate unique cell lineages. The regulation of region-specific cell division is a novel function for a localized mRNA.  相似文献   

3.
In Xenopus, an early and a late pathway exist for the selective localization of RNAs to the vegetal cortex during oogenesis. Previous work has suggested that distinct cellular mechanisms mediate localization during these pathways. Here, we provide several independent lines of evidence supporting the existence of common machinery for RNA localization during the early and late pathways. Data from RNA microinjection assays show that early and late pathway RNAs compete for common localization factors in vivo, and that the same short RNA sequence motifs are required for localization during both pathways. In addition, quantitative filter binding assays demonstrate that the late localization factor Vg RBP/Vera binds specifically to several early pathway RNA localization elements. Finally, confocal imaging shows that early pathway RNAs associate with a perinuclear microtubule network that connects to the mitochondrial cloud of stage I oocytes suggesting that motor driven transport plays a role during the early pathway as it does during the late pathway. Taken together, our data indicate that common machinery functions during the early and late pathways. Thus, RNA localization to the vegetal cortex may be a regulated process such that differential interactions with basal factors determine when distinct RNAs are localized during oogenesis.  相似文献   

4.
The 3′ untranslated region of mRNA encoding PHAX, a phosphoprotein required for nuclear export of U-type snRNAs, contains cis-acting sequence motifs E2 and VM1 that are required for localization of RNAs to the vegetal hemisphere of Xenopus oocytes. However, we have found that PHAX mRNA is transported to the opposite, animal, hemisphere. A set of proteins that cross-link to the localization elements of vegetally localized RNAs are also cross-linked to PHAX and An1 mRNAs, demonstrating that the composition of RNP complexes that form on these localization elements is highly conserved irrespective of the final destination of the RNA. The ability of RNAs to bind this core group of proteins is correlated with localization activity. Staufen1, which binds to Vg1 and VegT mRNAs, is not associated with RNAs localized to the animal hemisphere and may determine, at least in part, the direction of RNA movement in Xenopus oocytes.  相似文献   

5.
We have recently identified and cloned the cDNA of a new member of the glucose transporter family that has been designated GLUT12. GLUT12 possesses the structural features critical to facilitative transport of glucose but the key to understanding the possible physiological roles of this novel protein requires analysis of functional glucose transport. In the current study, we have utilized the Xenopus laevis oocyte expression system to assay transport of the glucose analog 2-deoxy-D-glucose and characterize the glucose transport properties and hexose affinities of GLUT12. Our results demonstrate that GLUT12 facilitates transport of glucose with an apparent preferential substrate affinity for glucose over other hexoses assayed. The results are significant to understanding the potential role and importance of GLUT12 in insulin-sensitive tissues and also cells with high glucose utilization such as cancer cells.  相似文献   

6.
In order to understand the importance of the cytosolic and nuclear-specific O-linked N-acetylglucosaminylation (O-GlcNAc) on cell cycle regulation, we recently reported that inhibition of O-GlcNAc transferase (OGT) delayed or blocked Xenopus laevis oocyte germinal vesicle breakdown (GVBD). Here, we show that increased levels of the long OGT isoform (ncOGT) accelerate X. laevis oocyte GVBD. A N-terminally truncated isoform (sOGT) with a similar in vitro catalytic activity towards a synthetic CKII-derived peptide had no effect, illustrating the important role played by the N-terminal tetratrico-peptide repeats. ncOGT microinjection in the oocytes increases both the speed and extent of O-GlcNAc addition, leads to a quicker activation of the MPF and MAPK pathways and finally results in a faster GVBD. Microinjection of anti-OGT antibodies leads to a delay of the GVBD kinetics. Our results hence demonstrate that OGT is a key molecule for the timely progression of the cell cycle.  相似文献   

7.
8.
Activin-like signaling plays an important role in early embryogenesis. Activin A, a TGF-beta family protein, induces mesodermal/endodermal tissues in animal cap assays. In a screen for genes expressed early after treatment with activin A, we isolated a novel gene, denoted as BENI (Brachyury Expression Nuclear Inhibitor). The BENI protein has a conserved domain at the N-terminus that contains a nuclear localization signal (NLS), and two other NLSs in the C-terminal domain. BENI mRNA was localized to the animal hemisphere at the gastrula stages and to ectoderm except for neural regions at stage 17; expression persisted until the tadpole stage. The overexpression of BENI caused gastrulation defects and inhibition of elongation of activin-treated animal caps with reduction of Xbra expression. Moreover, whole-mount in situ hybridization revealed reduced expression of Xbra in BENI mRNA-injected regions of gastrula embryos. Functional knockdown of BENI using an antisense morpholino oligonucleotide also resulted in an abnormal phenotype of embryos curling to the dorsal side, and excessive elongation of activin-treated animal caps without altered expression of mesodermal markers. These results suggested that BENI expression is regulated by activin-like signaling, and that this regulation is crucial for Xbra expression.  相似文献   

9.
10.
In this study, we report a highly efficient transgenesis technique for Xenopus tropicalis based on a method described first for Medaka. This simple procedure entails co-injection of meganuclease I-SceI and a transgene construct flanked by two I-SceI sites into fertilized eggs. Approximately 30% of injected embryos express transgenes in a promoter-dependent manner. About 1/3 of such embryos show incorporation of the transgene at the one-cell stage and the remainder are 'half-transgenics' suggesting incorporation at the two-cell stage. Transgenes from both classes of embryos are shown to be transmitted and expressed in offspring. The procedure also works efficiently in Xenopus laevis. Because the needle injection procedure does not significantly damage embryos, a high fraction develop normally and can, as well, be injected with a second reagent, for example an mRNA or antisense morpholino oligonucleotide, thus allowing one to perform several genetic manipulations on embryos at one time. This simple and efficient technique will be a powerful tool for high-throughput transgenesis assays in founder animals, and for facilitating genetic studies in the fast-breeding diploid frog, X. tropicalis.  相似文献   

11.
This study investigates for the first time the dynamics of endocannabinoid system appearance during low vertebrate Xenopus laevis development. We observed that the CB1 gene started to be expressed during the organogenesis period (+/- 1 dpf, st. 28) and expression persisted throughout the three further stages analyzed. Attention was focused on the localization of the CB1 messenger that was found both at the central level (in romboencephalon and in olfactory placods) and at the peripheral level (in the gastrointestinal tract) at +/- 3 dpf (st. 41), +/- 4 dpf (st. 46) and +/- 12 dpf (st. 49). We also considered the synthesis of CB1 protein that occurred from st. 41 onwards and, from this stage, we tested the receptor functionality in response to anandamide using cytosensor microphysiometry. CB1 functionality increased with development at both central and peripheral level. These data provide sufficient evidence to encourage further analysis on endocannabinoid physiological roles during embryonic and larval X. laevis growth.  相似文献   

12.
13.
A study was made of the effects of the venom of the Chilean spider Latrodectus mactans on endogenous ion-currents of Xenopus laevis oocytes. 1 μg/ml of the venom made the resting plasma membrane potential more negative in cells voltage-clamped at −60 mV. The effect was potentially due to the closure of one or several conductances that were investigated further. Thus, we determined the effects of the venom on the following endogenous ionic-currents: (a) voltage-activated potassium currents, (b) voltage-activated chloride-currents, and (c) calcium-dependent chloride-currents (Tout). The results suggest that the venom exerts its action mainly on a transient outward potassium-current that is probably mediated by a Kv channel homologous to shaker. Consistent with the electrophysiological evidence we detected the expression of the mRNA coding for xKv1.1 in the oocytes.  相似文献   

14.
Using a large-scale in situ hybridization screening, we found that the mRNA coding for Xenopus glutamate receptor interacting protein 2 (XGRIP2) was localized to the germ plasm of Xenopus laevis. The mRNA is maternally transcribed in oocytes and, during maturation, transported to the vegetal germ plasm through the late pathway where VegT and Vg1 mRNAs are transported. In the 3'-untranslated region (UTR) of the mRNA, there are clusters of E2 and VM1 localization motifs that were reported to exist in the mRNAs classified as the late pathway group. With in situ hybridization to the sections of embryos, the signal could be detected in the cytoplasm of migrating presumptive primordial germ cells (pPGCs) until stage 35. At stage 40, when the cells cease to migrate and reach the dorsal mesentery, the signal disappeared. A possible role of XGRIP2 in pPGCs of Xenopus will be discussed.  相似文献   

15.
Treatment of Xenopus laevis oocytes with cholesterol-depleting methyl-β-cyclodextrin (MeβCD) stimulates phosphorylation of mitogen-activated protein kinase (MAPK) and oocyte maturation, as reported previously [Sadler, S.E., Jacobs, N.D., 2004. Stimulation of Xenopus laevis oocyte maturation by methyl-β-cyclodextrin. Biol. Reprod. 70, 1685-1692.]. Here we report that treatment of oocytes with MeβCD increased levels of immunodetectable 39-kDa mos protein. The protein synthesis inhibitor, cycloheximide, blocked the appearance of Mos, blocked MeβCD-stimulated phosphorylation of MAPK, and inhibited MeβCD-induced oocyte maturation. These observations suggest that MeβCD activates the progesterone-signaling pathway. Chemical inhibition of steroid synthesis and mechanical removal of follicle cells were used to verify that MeβCD acts at the level of the oocyte and does not require production of steroid by surrounding follicle cells. Cortical Gαs is contained in low-density membrane; and treatment of oocytes with progesterone or MeβCD reduced immunodetectable levels of Gαs protein in cortices and increased internal levels of 45-kDa Gαs in cortical-free extracts. Dose-dependent increases in internal Gαs after treatment of oocytes with progesterone correlated with the steroid-induced maturation response, and the increase in internal Gαs after hormone treatment was comparable to the decrease in cortical Gαs. These results are consistent with a model in which release of Gαs from the plasma membrane is involved in activation of the progesterone-signaling pathway that leads to amphibian oocyte maturation.  相似文献   

16.
17.
The oocytes of many organisms, including frogs and fish, contain a distinct cytoplasmic organelle called the Balbiani body. Because of the scarcity of published information and the tremendous variability in the appearance, ultrastructure, and composition of Balbiani bodies between species, the function of the Balbiani body and its inter-species homology remain a mystery. In Xenopus laevis, the Balbiani body is known to play a role in transporting germ cell determinants and localized RNAs to the oocyte vegetal cortex. In fish, however, the molecular composition of the Balbiani body has not been studied to date, and its function remains completely unknown. We have studied the ultrastructure and molecular composition of previtellogenic oocytes of the sturgeon, Acipenser gueldenstaedtii, by using electron microscopy, in situ hybridization, and immunostaining. We have found that sturgeon oocytes contain two distinct zones of cytoplasm: homogeneous (organelle-free) and granular (organelle-rich). We have also found that the granular ooplasm, which we term the Balbiani cytoplasm, shares important homologies, in both ultrastructure and molecular composition, with Xenopus Balbiani bodies. This work was supported by funds from the research grant BW/IZ/2005 to M.Z.  相似文献   

18.
19.
Sox B1 group genes, Sox1, Sox2, and Sox3 (Sox1-3), are involved in neurogenesis in various species. Here, we identified the Xenopus homolog of Sox1, and investigated its expression patterns and neural inducing activity. Sox1 was initially expressed in the anterior neural plate of Xenopus embryos, with expression restricted to the brain and optic vesicle by the tailbud stage. Expression subsequently decreased in the eye region by the tadpole stage. Sox1 expression in animal cap explants was induced by inhibition of BMP signaling in the same manner as Sox2, Sox3, and SoxD. In addition, overexpression of Sox1 induced neural markers in ventral ectoderm and in animal caps. These results implicate Xenopus Sox1 in neurogenesis, especially brain and eye development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号