首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Question: In a southern temperate rain forest, we addressed three questions: (1) Does the abundance of climbing plants increase with light availability? (2) Do host tree species differ in their susceptibility to vine infestation? (3) How does the relationship between host tree trunk diameter and relative abundance of vines vary with their climbing mechanism? Location: Two sites in the temperate evergreen rain forest of southern Chile: Puyehue (40°39′S, 72°09′W; 350 m a.s.l.) and Pastahue (42°22′S, 73°49′W; 285 m a.s.l.). Methods: We sampled vines in 60 25‐m2 plots, with 20 plots in each of three light environments: mature forest, forest edges and canopy gaps. In each plot, for every tree ≥1.50‐m tall of any diameter we counted and identified all climbing plant individuals at a height of 1.30 m. We also counted, measured (trunk diameter at 1.30 m) and identified all these trees, and determined prevalence of vine infestation for each tree species. Results: Light availability in forest plots did not affect vine abundance when the number and size of host trees was taken into account. Overall, vine abundance increased with host tree trunk diameter. Tree species did not differ in the prevalence of vine infestation. The relative abundance of stem twiners and adhesive climbers decreased and increased with trunk diameter, respectively. The densities of stem twiners and adhesive climbers were negatively correlated across the forest. Conclusion: We provide further evidence that the pattern of vine abundance is independent of light availability in southern temperate rain forests, in contrast to results commonly reported for tropical rain forests. We also show that support suitability across the forest varies with the mechanism by which vines climb, probably due in part to biomechanical constraints and in part to vine interspecific competition, a virtually unexplored ecological factor.  相似文献   

2.
An ecological comparison, with special reference to tropical affinities, is made between the rain forests of New Zealand and south-east Australia, based on the distribution of seventy physiognomic-structural attributes in mature forests at selected sites (ten in New Zealand, twenty in Australia, and four in New Guinea to represent authentic humid tropical lowland rain forest). The structural data were recorded in a standard pro forma and subjected to classification, ordination and two-parameter analysis. In the classification, the Australian and New Zealand sites, with two exceptions, separated at the four-group level. The more complex (cool subtropical) Australian types were the least related to the New Zealand forests, which are closest to Australian simple (submontane) types. There was a similar distinction in the ordination, in which the trend along the first two vectors was latitudinal, correlated with extremes of temperature and with moisture availability. The relative contributions of the structural attributes to the various site groupings in the classification and ordination are enumerated, and provide an objective scale of comparison of the forests. Structural attributes designated by analysis as exclusively or preferentially tropical by reference to the New Guinea sites are then used to assess degree of tropical affinity. The simplified cool temperate (montane) forests dominated by one species of Notho-fagus in New Zealand and Australia are closely related. The Australian forests of the sub-montane zone (mean annual temperature 12–15° C) which are typically dominated by Ceratopetalum apetalum, Nothofagus moorei or Doryphora sassafras, are similar to the podocarp-broadleaf forests, with or without kauri, of New Zealand. The Australian forests of the cool subtropical zone (mean annual temperature 15–17°C) which have mixed dominants, have some affinities with the kauri-podocarp-broadleaf forests of North Auckland. In New Zealand, a broadleaf type in which kauri is absent or rare on basalt in North Auckland (lat. 35° S) was the most complex forest sampled and is marginally subtropical.  相似文献   

3.
Aim We examined relationships between climate–disturbance gradients and patterns of vegetation zonation and ecotones on a subtropical mountain range. Location The study was conducted on the windward slopes of the Cordillera Central, Dominican Republic, where cloud forest appears to shift in a narrow ecotone to monodominant forest of Pinus occidentalis. Methods Climate, disturbance and vegetation data were collected over the elevation range 1100–3100 m and in 50 paired plots along the ecotone. Aerial photographs were georeferenced to a high‐resolution digital elevation model in order to enable the analysis of landscape‐scale patterns of the ecotone. Results A Shipley–Keddy test detected discrete compositional ecotones at 2200 and 2500 m; the distributions of tree species at lower elevations were continuous. The elevation of the ecotone determined with aerial photographs was fairly consistent, namely ± 164 m (SD) over its 124‐km length, but it exhibited significant landscape variation, occurring at a lower elevation in a partially leeward, western zone. The ecotone also occurred significantly lower on ridges than it did in drainage gullies. Ecotone forest structure and composition differed markedly between paired plots. In pine paired plots, the canopy height was 1.7 times higher and the basal area of non‐pine species was 6 times lower than in the cloud forest directly below. Fire evidence was ubiquitous in the pine forest but rare in the abutting cloud forest. Mesoclimate changed discontinuously around the elevation of the ecotone: humidity and cloud formation decreased markedly, and frost frequency increased exponentially. Main conclusions The discreteness of the ecotone was produced primarily by fire. The elevational consistency of the ecotone, however, resulted from the overarching influence of mesoclimate on the elevational patterns of fire occurrence. Declining temperature and precipitation combine with the trade‐wind inversion to create a narrow zone where high‐elevation fires extinguish, enabling fire‐sensitive and fire‐tolerant taxa to abut. Once established, mesotopography and contrasting vegetation physiognomy probably reinforce this boundary through feedbacks on microenvironment and fire likelihood. The prominence of the pine in this study – and of temperate and fire‐tolerant taxa in subtropical montane forests in general – highlights the importance of climate‐disturbance–biogeography interactions in ecotone formation, particularly where fire mediates a dynamic between climate and vegetation.  相似文献   

4.
Question: Are vines light‐demanding species? Location: Temperate evergreen rain forest of southern Chile (40°39′S, 72°11′W). Methods: In 45 plots of 25 m2 distributed in treefall canopy gaps, secondary forest stands and old‐growth forest (15 plots per light environment), all climbing and non‐supported vines were counted and identified to species level, and canopy openness was quantified using hemispherical photographs. Vine abundance and diversity (species richness and Simpson's index) were compared in the three light environments and similarity between vine communities was estimated using Jaccard's similarity coefficient. We also determined the relationship between light niche breadth and local dominance at the species level. Results: In total there were 2510 vine individuals of 14 species. Canopy openness was significantly different in the three light environments. Species richness, diversity, community composition and density of vines were similar in treefall gaps, secondary and old‐growth forest. Of the seven more common vine species, which accounted for 91% of all vines, three had even distribution, two were more abundant in the shaded understorey, and two had higher density in well‐lit sites. Local dominance of vine species and niche breadth were not significantly associated. Conclusions: Our study in a temperate rain forest questions the widespread notion of vines as pioneer‐like species, which may be a consequence of the abundance of some lianas in disturbed sites of tropical forests. Functional arguments are needed to justify a general hypothesis on light requirements of vines, which constitute a vast group of species.  相似文献   

5.
木质藤本是生物多样性的重要组成,木质藤本通过影响支持木进而影响群落的结构和功能,但在生物多样性丰富的北热带喀斯特森林中,木质藤本与支持木的关系鲜为人知。以喀斯特季节性雨林的五桠果叶木姜子(Litsea dilleniifolia)群落为研究对象,对木质藤本的密度、分布格局及其与主要树种的关系进行调查研究,分析木质藤本对树木的影响。结果显示:(1)五桠果叶木姜子群落内木质藤本平均密度为0.0913株/m2,木质藤本在0-20m空间尺度整体表现为聚集分布,且随着尺度增大,聚集强度逐渐减弱;不同径级木质藤本在不同尺度上的分布格局不同。(2)木质藤本对不同径级、不同种类、不同聚集强度的支持木选择表现以下体征:随着支持木径级增加,木质藤本攀附的比例和每木藤本数有增加趋势,且木质藤本胸径与支持木胸径呈极显著正相关;附藤率较高的支持木有紫葳科(Bignoniaceae)种类和东京桐(Deutzianthus tonkinensis),单木附藤数量多的是南方紫金牛(Ardisia thyrsiflora);物种的聚集强度与附藤率、附藤数量呈负相关。(3)木质藤本的密度与支持木死亡率关系不显著,而物种的附藤率与死亡率呈极显著负相关。以上结果表明,木质藤本密度在原生性喀斯特季节性雨林中并不高,且木质藤本对支持木具有选择性,但其对五桠果叶木姜子群落的死亡率并未产生显著影响。该研究可为喀斯特原生性季节性雨林的物种共存、极小植物种群保育提供理论依据,也可为石漠化区域的植被修复提供科学参考。  相似文献   

6.
Questions: Is the occurrence of vine species in neotropical rain forests primarily determined by properties of the forest (environmental factors), by properties of the trees (tree species or tree size) or are vines randomly distributed? Location: Maya Biosphere Reserve, Guatemala. Methods: In five 1‐ha plots that span variation from unlogged forest to forest impacted by recurrent human disturbance we recorded the presence of all climbing vine species on every tree. The presence of all free standing vine species and 11 environmental variables were recorded in 100‐m2 subplots. The relationship of host tree diameter and host tree identity on single tree vine species richness was investigated by GLM modelling. Partial redundancy analyses were used to partition the variation in vine species composition on two sources: environmental factors and tree species identity. Results: Single tree vine richness increased with increasing host tree DBH and differed significantly among host species. For climbing vines, the ratio of variation in subplot presence explained by tree species and by environmental variables was ca. 4:1 (in the most disturbed logged plots slightly lower), for free standing vines this ratio varied from 1:2 in the most disturbed logged plots to 9:1 in reserve plots, while a ratio of ca. 1:1 was found for all plots analysed together. Conclusion: Different tree species have different probabilities of being infested by vines. Vines see both the forest and the trees; the environment is more important in earlier developmental stages, properties of individual trees become more important from the time vines start to climb.  相似文献   

7.
Aim Mechanisms generating biodiversity and endemism are influenced by both historical and ecological patterns, and the relative roles of history vs. ecological interactions are still being debated. The phylogeography of one rain forest‐restricted caddisfly species, Tasimia palpata, thought to have good dispersal abilities, is used to address questions about shifts of highland rain forest habitat during Pleistocene glaciations and about their consequences for haplotype composition and distribution. Location Tasimia palpata occurs in highland subtropical rain forest patches, which are separated from one another by lowland dry bush, in south‐eastern Queensland, Australia. Methods We sequenced 375 base pairs of the mitochondrial cytochrome oxidase I gene from 169 individuals (20 populations) of T. palpata, mainly from three fragmented subtropical rain forest blocks, revealing 46 haplotypes. Analysis of molecular variance (amova ), genetic divergence between populations, nested clade analyses and tests based on coalescent theory were used to analyse phylogeographical relationships among T. palpata populations. Results amova indicates spatial genetic structure between isolated subtropical rain forest patches, with an isolation‐by‐distance effect. Tests based on coalescent theory suggest a repeated process of population reductions and divergence between isolated rain forests during Pleistocene glaciations as a consequence of habitat constrictions followed by population expansions during interglacial periods when subtropical rain forest expanded. In addition, these results suggest that, prior to the Pleistocene, rain forest and T. palpata had more widespread distributions in this region. Main conclusions Historical rain forest expansion and contraction during the Pleistocene resulted in changes in demography and genetic diversity of T. palpata, as well as in an increase in genetic divergence between populations from different patches of subtropical rain forest. Despite the fact that this caddisfly species was isolated in separate highland rain forest patches at various times during the Pleistocene, there is no evidence of allopatric speciation during the Quaternary, which contrasts with other examples of endemism and high diversity in rain forest highlands.  相似文献   

8.
A 14C-dated high-resolution palaeoenvironmental record from a mire in southern Chile is used to reconstruct the Late-glacial and Holocene vegetation history of the Magellanic rain forest. The Late-glacial environment after around 15400–13500 cal b.p. was dominated by Gunnera magellanica, Nothofagus species (dombeyi type) and Gramineae (Poaceae) indicating an open parkland with cool and damp climatic conditions. At the end of the Late-glacial there was an increase in G. magellanica and a decline in Nothofagus dombeyi type. This ecological signal is interpreted as a result of a re-advance of the Gran Campo Nevado icefield, caused by either Younger Dryas cooling or a latitudinal shift of the southern Westerlies. After around 11250–10750 cal b.p. Nothofagus species, Drimys winteri and Embothrium coccineum expanded, indicating development of the Magellanic rain forest. At 4254±120 cal b.p. a tephra layer was deposited by the eruption of the Mt. Burney volcano leading to a long-term decline of the Nothofagus forest. A primary succession was then initiated, lasting for over 800 years before pre-eruption vegetation patterns redeveloped. In summary, our results indicate the extreme sensitivity of the Magellanic rain forest to climatic or volcanic impacts and the slow recovery of a mature forest after environmental changes.  相似文献   

9.
Physiognomy, structure and floristic composition of one hectare of lowland tropical rain forest was studied in detail at Los Tuxtlas, Mexico. Physiognomically, the Los Tuxtlas forest should be classified as lowland tropical high evergreen rain forest. The forest showed a closed canopy at 30–35 m. Of all woody, non-climbing species with a DBH1.0 cm 89.4% (94.5% of all individuals) were evergreen, 25.4% (59.5% of the individuals) had compound leaves, and over 80% of species (and individuals) had leaves in the notophyll and mesophyll size classes. The forest structure was characterized by a low density (2976 individuals with a DBH1.0 cm, 346 individuals with a DBH10.0 cm, per ha, excluding vines) with an average basal area (38.1 m2, DBH1.0 cm, 34.9 m2, DBH10.0 cm, per ha, excluding vines). This was attributed to the relative maturity of the forest on the study plot. The study plot contained 234 species (11 208 individuals with a height 0.5 m), of which 55.1% (34.8% of individuals) were trees, 9.4% (6.8%) shrubs, 3.4% (44.3%) palms, 20.1% (5.2%) vines, 6.8% (8.7%) herbs and 5.1% (0.3%) of unknown lifeform. Furthermore, 58 species of epiphytes and hemi-epiphytes were found. Diversity of trees, shrubs and palms with a DBH1.0 cm was calculated as Shannon-Wiener index (4.65), Equitability index (0.65), and Simpson index (0.10). The dominance-diversity curve showed a lognormal form, characteristic for tropical rain forest. The community structure was characterized by a relative dominance of Astrocaryum mexicanum in the understorey, Pseudolmedia oxyphyllaria in the middle storeys, and Nectandra ambigens in the canopy. Species population structures of 31 species showed three characteristic patterns, differentiated by recruitment: continuously high, discontinuously high, and continuously low recruitment. Height/diameter and crown cover/diameter diagrams suggested a very gradual shift from height growth to crown growth during tree development. Forest turnover was calculated as 138 years. Compared to other tropical rain forests the Los Tuxtlas forest had 1. similar leaf physiognomical characteristics, 2. a lower diversity, 3. a lower density, 4. an average basal area, and 5. a slow canopy turnover.  相似文献   

10.
In hardwood subtropical forests of southern Florida, nonnative vines have been hypothesized to be detrimental, as many species form dense “vine blankets” that shroud the forest. To investigate the effects of nonnative vines in post‐hurricane regeneration, we set up four large (two pairs of 30 X 60 m) study areas in each of three study sites. One of each pair was unmanaged and the other was managed by removal of nonnative plants, predominantly vines. Within these areas, we sampled vegetation in 5 X 5 m plots for stems 2 cm DBH (diameter at breast height) or greater and in 2 X 0.5 m plots for stems of all sizes. For five years, at annual censuses, we tagged and measured stems of vines, trees, shrubs and herbs in these plots. For each 5 X 5 m plot, we estimated percent coverage by individual vine species, using native and nonnative vines as classes. We investigated the hypotheses that: (1) plot coverage, occurrence and recruitment of nonnative vines were greater than that of native vines in unmanaged plots; (2) the management program was effective at reducing cover by nonnative vines; and (3) reduction of cover by nonnative vines improved recruitment of seedlings and saplings of native trees, shrubs, and herbs. In unmanaged plots, nonnative vines recruited more seedlings and had a significantly higher plot‐cover index, but not a higher frequency of occurrence. Management significantly reduced cover by nonnative vines and had a significant overall positive effect on recruitment of seedlings and saplings of native trees, shrubs and herbs. Management also affected the seedling community (which included vines, trees, shrubs, and herbs) in some unanticipated ways, favoring early successional species for a longer period of time. The vine species with the greatest potential to “strangle” gaps were those that rapidly formed dense cover, had shade tolerant seedling recruitment, and were animal‐dispersed. This suite of traits was more common in the nonnative vines than in the native vines. Our results suggest that some vines may alter the spatiotemporal pattern of recruitment sites in a forest ecosystem following a natural disturbance by creating many very shady spots very quickly.  相似文献   

11.
Aims: The upper elevation limit of forest vegetation in mountain ranges (the alpine treeline ecotone) is expected to be highly sensitive to global change. Treeline shifts and/or ecotone afforestation could cause fragmentation and loss of alpine habitat, and are expected to trigger considerable alterations in alpine vegetation. We performed an analysis of vegetation structure at the treeline ecotone to evaluate whether distribution of the tree population determines the spatial pattern of vegetation (species composition and diversity) across the transition from subalpine forest to alpine vegetation. Location: Iberian eastern range of the Pyrenees. Methods: We studied 12 alpine Pinus uncinata treeline ecotones. Rectangular plots ranging from 940 to 1900 m2 were placed along the forest‐alpine vegetation transition, from closed forest to the treeless alpine area. To determine community structure and species distribution in the treeline ecotone, species variation along the forest‐alpine vegetation transition was sampled using relevés of 0.5 m2 set every 2 m along the length of each plot. Fuzzy C‐means clustering was performed to assess the transitional status of the relevés in terms of species composition. The relation of P. uncinata canopy cover to spatial pattern of vegetation was evaluated using continuous wavelet transform analysis. Results: Vegetation analyses revealed a large degree of uniformity of the subalpine forest between all treeline ecotone areas studied. In contrast, the vegetation mosaic found upslope displayed great variation between sites and was characterized by abrupt changes in plant community across the treeline ecotone. Plant richness and diversity significantly increased across the ecotone, but tree cover and diversity boundaries were not spatially coincident. Conclusions: Our results revealed that no intermediate communities, in terms of species composition, are present in the treeline ecotone. Ecotone vegetation reflected both bedrock type and fine‐scale heterogeneity at ground level, thereby reinforcing the importance of microenvironmental conditions for alpine community composition. Tree cover did not appear to be the principal driver of alpine community changes across the treeline ecotone. Microenvironmental heterogeneity, together with effects of past climatic and land‐use changes on ecotone vegetation, may weaken the expected correlation between species distribution and vegetation structure.  相似文献   

12.
Nothofagus antarctica is the most representative species of the native mixed forest occupying ecotone areas between forests and steppe in NW Patagonia, South-America. In this type of environment, vulnerability to climate change is particularly enhanced. Predictions of future climatic conditions for this region indicate an increment of atmospheric temperature and also, a high variability of rain events, threatening forest persistence and productivity. In this framework, management strategies are crucial to guarantee sustainability of native vegetation systems. The objective of this study was to study the effect of tree density on the ecophysiological limitations of water use of N. antarctica, as a proxy to its productivity, during a drought period. Compared with the unthinned forest, the thinned forest showed higher soil water availability, higher sapflow density (Js) and canopy conductance (Gc) values, similar aerodynamic conductance (Ga) and a low degree of coupling to vapor pressure deficit. Ecophysiological results demonstrated a high limitation over gas exchange of individual N. antarctica trees imposed by the resistance in the hydraulic soil-to-leaf pathway in the unthinned-natural condition. Surprisingly, our results suggest structural limitations in the unthinned stand which reduce the ability of N. antarctica trees to take advantage of wet seasons, at least in the short term. Thinning could decrease the susceptibility of N. antarctica-based systems to drought stress, by increasing resource availability to the remaining trees, thus contributing to enhance the persistence of this species under climate change conditions.  相似文献   

13.
Seedling and sapling dynamics in a Puerto Rican rain forest were compared between forest understory and soil pits created by the uprooting of 27 trees during Hurricane Hugo. Soil N and P, organic matter, and soil moisture were lower and bulk densities were higher in the disturbed mineral soils of the pits than in undisturbed forest soils ten months after the hurricane. No differences in N and P levels were found in pit or forest soils under two trees with N–fixing symbionts (Inga laurina and Ormosia krugii) compared to soils under a tree species without N–fixing sym–bionts (Casearia arborea), but other soil variables (Al, Fe, K) did vary by tree species. Forest plots had greater species richness of seedlings (<10 cm tall) and saplings (10–100 cm tall) than plots in the soil pits (and greater sapling densities), but seedling densities were similar between plot types. Species richness and seedling densities did not vary among plots associated with the three tree species, but some saplings were more abundant under trees of the same species. Pit size did not affect species richness or seedling and sapling densities. Recruitment of young Cecropia schreberiana trees (>5 m tall) 45 months after the hurricane was entirely from the soil pits, with no tree recruitment from forest plots. Larger soil pits had more tree recruitment than smaller pits. Defoliation of the forest by the hurricane created a large but temporary increase in light availability. Recruitment of C. schreberiana to the canopy occurred in gaps created by the treefall pits that had lower soil nutrients but provided a longer–term increase in light availability. Treefall pits also significantly altered the recruitment and mortality of many understory species in the Puerto Rican rain forest but did not alter species richness.  相似文献   

14.
We present new DNA sequence data (12S, 16S, and opsin gene fragments) and morphological characters of the male genitalia for a phylogenetic analysis of the bumble bee subgenus Fervidobombus. There is no significant incongruence between the three molecular data sets, and little incongruence between the DNA and morphology. Simultaneous analysis of all the data partitions resulted in a tree that was entirely congruent with the All-DNA tree. Optimization of the geographic locations of the taxa onto the tree topology using dispersal/vicariance analysis suggests a complex picture of spread and diversification of Fervidobombus from the Old World into the southern New World. There is a phylogenetic component to their spread into tropical rain forest, as the two primary rain forest species (Bombus transversalis and Bombus pullatus) comprise a monophyletic clade, along with a third species, Bombus atratus, which is widely distributed in South America, including lowland subtropical habitats.  相似文献   

15.
In temperate rainforests on Chiloé Island in southern Chile (42°S), most canopy trees bear fleshy, avian‐dispersed propagules, whereas emergent tree species have dry, wind‐borne propagules. In the present study, the following hypothesis was tested: regardless of species, fleshy propagules are deposited in greater numbers in canopy gaps and in forest margins and hence have a more heterogeneous seed shadow than wind‐dispersed propagules. To test this hypothesis, the seed rains of these two types of propagules were compared in the following forest habitats: (i) tree‐fall gaps (edges and centre); (ii) forest margins with adjacent pastures; and (iii) under closed canopy (forest interior). Seed collectors (30‐cm diameter) were placed in two (15 and 100 ha) remnant forest patches (n = 60–100 seed collectors per patch) distributed in the four habitats. Seeds were retrieved monthly from each collector during two reproductive seasons (1996, 1997). In both years, the seed rain was numerically dominated by two species with dry propagules (Laureliopsis philippiana and Nothofagus nitida) and three species with fleshy fruits (Drimys winteri, Amomyrtus luma, and Amomyrtus meli). The seed shadows of the two species with dry, wind‐dispersed seeds differed markedly. Seeds of L. philippiana were deposited predominantly in canopy openings, whereas N. nitida seeds fell almost entirely in the forest interior. The fleshy‐fruited species, Drimys and Amomyrtus spp., had similar seed deposition patterns in the various habitats studied, but the between‐year differences in seed rain were greater in Drimys winteri than in Amomyrtus spp. Although no more than 10% of fleshy‐fruited propagules reached the margins of the patch, approximately 7% of these were carried there by birds. Every year, canopy gaps (pooling data from edges and centres) concentrated approximately 60% of the total seed rain of both propagule types in both forest patches. Forest margins received less than 20% of the total seed rain, which was largely dominated by fleshy‐fruited species. Seed shadows were a species‐specific attribute rather than a trait associated with propagule type and dispersal mode.  相似文献   

16.
Herbivory rates are generally thought to be higher in tropical than in temperate forests. Nevertheless, tests of this biogeographic prediction by comparing a single plant species across a tropical-temperate range are scarce. Here, we compare herbivore damage between subtropical and temperate populations of the evergreen tree Aextoxicon punctatum (Olivillo), distributed between 30° and 43° S along the Pacific margin of Chile. To assess the impact of herbivory on Olivillo seedlings, we set up 29 experimental plots, 1.5 × 3 m: 16 in forests of Fray Jorge National Park (subtropical latitude), and 13 in Guabún, Chiloé Island (temperate latitude). Half of each plot was fenced around with chicken wire, to exclude small mammals, and the other half was left unfenced. In each half of the plots we planted 16 seedlings of Olivillo in December 2003, with a total of 928 plants. Seedling survival, leaf production and herbivory by invertebrates were monitored over the next 16 mo. Small mammal herbivores killed ca 30 percent of seedlings in both sites. Nevertheless, invertebrate herbivory was greater in the temperate forest, thus contradicting the expected trend of increasing herbivore impact toward the tropics. Seedling growth was greater in subtropical forest suggesting better conditions for tree growth or that higher invertebrate herbivory depressed seedling growth in the temperate forest. Invertebrate herbivory increased toward temperate latitudes while small mammal herbivory was similar in both sites. We suggest that comparison of single species can be useful to test generalizations about latitudinal patterns and allow disentangling factors controlling herbivory patterns across communities.  相似文献   

17.
Aim This study documents the effects of multiple fires and drought on the woody structure of a north Australian savanna never grazed by domestic stock. Location The study was conducted in a 500 ha pocket of Eucalyptus‐dominated savanna surrounded by a late Quaternary lava flow. The flow is known as the Great Basalt Wall, located c. 50 km northeast of Charters Towers in semi‐arid north‐eastern Australia. This region was exposed to the largest 5‐year rainfall deficit on record between 1992 and 1996. Methods All individual woody plants were tagged within a 1.56 ha plot. Species were segregated into their habitat affinities (rain forest, ecotone, savanna) and regeneration strategy (resprouter, seeder). The survivorship of plants within these categories was analysed in relation to fire intensity from the first fire, and to each of four fires lit between 1996 and 2001. Results Before the first fire, the plot contained thirty‐one tree species including twenty‐one typical of the surrounding dry rain forest. These rain forest species were represented by small individuals and constituted <1% of the total basal area of woody plants. The basal area of savanna trees was 7.5 m2 ha?1 at the commencement of monitoring, although 31% had recently died and others had major crown damage. Further death of the drought debilitated savanna trees was substantial during the first year of monitoring and the basal area of live savanna trees declined to 1.1 m2 ha?1 after 5 years. Most species from both rain forest and savanna were classified as resprouters and are capable of regenerating from underground organs after fire. Species without this ability (rain forest seeders and ecotone seeders) were mostly eliminated after the first two consecutive fires. Among resprouters, survivorship declined as fire intensity increased and this was more pronounced for rain forest than for savanna species. Repeated burning produced a cumulative effect of decreasing survivorship for rain forest resprouters relative to savanna resprouters. Main conclusions The study provides evidence that savanna and rain forest trees differ in fire susceptibility and that recurrent fire can explain the restricted distribution of rain forest in the seasonally arid Australian tropics. The time of death of the savanna trees is consistent with the regional pattern after severe drought, and highlights the importance of medium term climate cycles for the population dynamics of savanna tree species and structure of Australian savannas.  相似文献   

18.
Summary Seed availability is a major factor limiting the recruitment of rain forest to cleared land, but little is known about the composition of the soil seed bank under different reforestation pathways. We quantified changes in the viable soil seed bank following rain forest clearing and pasture establishment and subsequent reforestation in subtropical eastern Australia. Major reforestation pathways in the region include planting of a diverse suite of native trees for ecological restoration purposes, autogenic regrowth dominated by the non‐native tree Camphor Laurel (Cinnamomum camphora) and management of this regrowth to accelerate the development of a native tree community. These pathways differ considerably in cost: restoration plantings are expensive, autogenic regrowth is free, whilst managing regrowth generally costs much less than restoration plantings. We surveyed five sites within each of three reforestation pathways as well as reference sites in remnant rain forest and pasture. The composition of the seed bank was determined by germinating plants from soil samples collected from each site. Germinants were classified into several functional groups according to life form, origin, dispersal mode and successional stage. The majority of functional groups varied significantly in abundance or richness between rain forest and pasture sites. Most of the functional groups that varied between rain forest and pasture were restored to values similar to rain forest by at least one of the three reforestation pathways examined. The species richness of native woody plants in the soil seed bank was slightly higher in restoration plantings than in autogenic or managed regrowth; nevertheless, the species richness and abundance of native woody plants and vines were higher in the seed bank of autogenic regrowth than pasture, and both attributes were enhanced by the management of regrowth sites. The results of this study show that autogenic regrowth can make an important contribution to rain forest restoration at a landscape scale. The optimal reforestation approach or mix of approaches will depend on the desired rate of recovery and the resources available for restoration.  相似文献   

19.
Question: What changes occur as a consequence of the massive flowering and senescence of the dominant understory species of bamboo, Chusquea culeou (E. Desvaux)? In this study, we documented some of the ecological consequences of this rare event that occurred in 2001, the previous flowering having occurred more than 60 years ago. Location: Nothofagus temperate forest, Patagonia, Argentina. Methods: We assessed changes in environmental variables and bamboo biomass post‐flowering in an old‐growth southern beech forest. In addition, we monitored the demography of emergent Ch. culeou seedling and Nothofagus nervosa saplings, comparing non‐flowered (live understory) and flowered (senescent understory) patches within the forest matrix. Results: Bamboo flowering dramatically increased light availability in the forest understory but, surprisingly, other environmental changes were not observed. Bamboo seedlings emerged in both patch types, and experienced gradual but modest mortality through time. Bamboo dieback promoted higher survivorship and an increment in biomass, height, number of leaves and buds in the saplings of Nothofagus nervosa. Conclusion: The high density of bamboo seedlings 5 years after the flowering event and the independence of emergence from environmental variables suggest that understory regeneration is a gradual process that is not strongly regulated by initial seedling density or resource limitation. In contrast, microenvironmental conditions created after the flowering event significantly increased Nothofagus sapling growth and survival. These results suggest that overstory forest regeneration could be enhanced in this temperate forest in the first years after this infrequent bamboo flowering event.  相似文献   

20.
Aim We present a new method to economically map gradual changes in plant species composition in lowland rain forests using field data and satellite images. Such a method will be a useful tool in planning the sustainable use and conservation of Amazonian rain forests. Location The study covered an area of c. 700 km2 of primary rain forest in Amazonian Ecuador. Methods We field inventoried the species composition of pteridophytes and Melastomataceae in 340 inventory plots (5 m × 50 m), described the prevailing topography and analysed soil cation concentration and texture. We used non‐metric multidimensional scaling (NMDS) to summarize the floristic variation among the inventory plots in three ordination dimensions. The scores of the three ordination axes were predicted to non‐visited places using a Landsat TM (thematic mapper) satellite image and the k nearest neighbours (knn) estimation method. To avoid extrapolation, we excluded from the analysis those pixel windows whose spectral values were not represented in the areas covered by field sampling. The accuracy of the predictions was evaluated by cross‐validation and by comparing the predictions based on spectrally nearest neighbours to the predictions based on random neighbours. Results The floristic gradients presented by NMDS ordination were interpretable in terms of topography, drainage and soil cation content. Thirteen percent of the cloud‐free pixels were excluded from the knn analysis to avoid extrapolation. The estimates of the floristic ordination scores based on spectrally nearest neighbours were always more accurate than estimates based on random neighbours. Main conclusions The presented method needs a relatively small input of work and resources, is mechanistic and produces maps that give relevant information on floristic variation over forest areas that are traditionally considered essentially homogeneous. Therefore, the method appears to have a great potential for use in mapping large areas of Amazonian rain forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号