首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:观察促凋亡蛋白p53上调凋亡调控因子(PUMA)在高糖所致H9C2心肌细胞凋亡中的作用及机制。方法:H9C2心肌细胞随机分为对照组(使用5.5mmol/L葡萄糖作用于细胞)和高糖组(使用35 mmol/L葡萄糖作用于细胞,HG组)分别刺激6 h, 12 h, 24 h和48 h,每组设复孔5个,TUNEL染色检测细胞凋亡率;RT-PCR及Western blot法分别测定PUMA mRNA及蛋白表达情况;JC-1法检测线粒体膜电位;Western blot测定caspase-3表达和细胞色素c(Cyt C)释放。H9C2细胞随机分为四组,对照组、高糖(35 mmol/L)、HG+si-scramble组(使用si-scramble转染心肌细胞24 h,使用35mmol/L葡萄糖作用于细胞)和Si-PUMA组(使用si-PUMA转染心肌细胞24 h,使用35mmol/L葡萄糖作用于细胞),观察抑制PUMA表达对高糖诱导细胞凋亡率、线粒体膜电位、Cyt C的影响。结果:与对照组相比,高糖刺激心肌细胞组TUNEL染色阳性率、活化caspase-3和PUMA表达明显升高(P<0.0...  相似文献   

2.
为探讨雷帕霉素对D-葡萄糖诱导的人肾小球足细胞增殖、迁移和上皮–间质转化(EMT)的影响及磷脂酰肌醇-3-激酶/丝氨酸–苏氨酸激酶(PI3K/AKT)信号通路的调控作用,该研究体外培养人肾小球足细胞HGPC细胞系,并将其分为对照组(5 mmol/L的D-葡萄糖)、高糖组(30 mmol/L的D-葡萄糖)、低/中/高浓度组(在30 mmol/L的D-葡萄糖的基础上加入2.5、5.0、10.0μmol/L雷帕霉素),用酶联免疫吸附实验(ELISA)、细胞计数试剂盒8(CCK-8)测定炎症因子白细胞介素-8(IL-8)和肿瘤坏死因子-α(TNF-α)的表达水平及细胞活力,筛选出最适雷帕霉素后,又将细胞分为对照组、高糖组、雷帕霉素组、LY294002组(30 mmol/L的D-葡萄糖+10μmol/L PI3K/AKT通路抑制剂LY294002)、雷帕霉素+LY294002组(30 mmol/L的D-葡萄糖+10.0μmol/L雷帕霉素+10μmol/L PI3K/AKT通路抑制剂LY294002)和雷帕霉素+SC79组(30 mmol/L的D-葡萄糖+10.0μmol/L雷帕霉素+10μmo...  相似文献   

3.
目的: 探讨程序性坏死在高糖诱导的大鼠原代心肌细胞损伤中的变化及可能机制。方法: 原代大鼠心肌细胞随机分为4组(n=9):正常对照组(Control,5.5 mmol/L葡萄糖培养心肌细胞48 h)、高糖组(HG,30 mmol/L葡萄糖培养心肌细胞48 h)、HG+Nec-1(30 mmol/L葡萄糖+100 μmol/L程序性坏死关键蛋白RIP1抑制剂Nec-1共同培养心肌细胞48 h)组、高渗组(HPG,5.5 mmol/L葡萄糖+24.5 mmol/L甘露醇共同培养心肌细胞48 h)。MTT法检测各组心肌细胞活力,DHE荧光染色检测细胞氧化应激水平,ELISA法检测心肌细胞TNF-α、IL-6及IL-1β水平,Real-time PCR和Western blot分别检测各组程序性坏死关键蛋白RIP1、RIP3、MLKL mRNA和蛋白水平的表达情况。结果: 与Control组相比,HG组心肌细胞活力明显降低(P<0.01),氧化应激水平明显增高(P<0.01),TNF-α、IL-6及IL-1β水平升高明显(P<0.01),RIP1、RIP3、MLKL mRNA及蛋白水平表达均明显升高(P<0.05);与HG组相比,HG+Nec-1组心肌细胞活力明显升高(P<0.01),氧化应激水平明显下降(P<0.01),TNF-α、IL-6及 IL-1β水平明显降低(P<0.01), RIP1、RIP3、MLKL mRNA及蛋白水平表达均下降(P<0.05)。结论: 高糖诱导的原代大鼠心肌细胞损伤可引起程序性坏死的发生;抑制程序性坏死可减轻细胞损伤的机制,可能与抑制氧化应激、减轻炎症反应有关。  相似文献   

4.
目的:观察钙敏感受体(CaSR)在糖尿病性肝损伤发生中的作用。方法:本实验分别制备糖尿病大鼠和高糖处理HSC系大鼠肝星形细胞模型。40只Wistar大鼠随机分为正常对照组(Control,n=10),糖尿病组(T1D,STZ 60 mg/kg一次性腹腔注射,n=30),造模成功后分别在2、4、8周检测大鼠的体重、血糖、血清中谷草转氨酶(AST)和谷丙转氨酶(ALT)活性,观察形态学和超微结构改变,以及Western blot检测CaSR和肝纤维化相关指标表达的变化。HSC系大鼠肝星形细胞随机分为正常对照组(Control,10%FBS-DMEM+5.6 mmol/L葡萄糖),高糖组(HG,10%FBS-DMEM+40 mmol/L葡萄糖下培养48h)和CaSR抑制剂组(HG+Calhex231,10%FBS-DMEM+40mmol/L葡萄糖+2.5μmol/L CaSR抑制剂(Calhex231)下培养48h,每组n=5)。结果:动物模型中,与正常组相比,糖尿病大鼠体重减轻,血糖、AST和ALT显著升高,CaSR和胶原Ⅰ(COⅠ)、胶原Ⅲ(C...  相似文献   

5.
目的: 探讨雌激素处理人骨髓间充质干细胞(hBMSC)对高糖诱导的人脐静脉血管内皮细胞(HUVEC)损伤的保护作用及机制。方法: 采用30 mmol/L葡萄糖刺激hBMSC细胞建立高糖模型并分组:以无刺激者为高糖对照组(HG组)、以20 μmol/L雌激素处理者为高糖雌激素组(HG+E2组)、以5 μmo/L蛋白激酶B(PKB/Akt)抑制剂Triciribine预处理45 min后,再以20 μmol/L雌激素处理者为高糖Akt抑制剂组(HG+E2+Triciribine组)和正常条件培养的hBMSC为正常对照组(NG组)。分别于处理12 h后,采用CCK8法检测各组hBMSC的细胞活力,硝酸还原酶法和ELISA法检测各组培养基上清中NO、VEGF和IL-8的含量(n=6),48 h后采用Western blot检测内皮型一氧化氮合酶(eNOS)和磷酸化eNOS(p-eNOS)蛋白表达水平(n=3)。此外,提取各组hBMSC的培养基上清作为条件培养基(CM)培养人脐静脉血管内皮细胞(HUVEC)并分组为:HG-CM组(HG组条件培养基处理)、HG+E2-CM组(HG+E2组条件培养液处理)、HG+E2+Triciribine-CM组(HG+E2+Triciribine组条件培养基处理)和HG-H组(高糖对照组,30 mmol/L葡萄糖终浓度处理),分别于12 h后,采用CCK8法检测各组HUVEC的细胞活力(n=6),24 h后采用流式细胞术检测各组HUVEC细胞的凋亡率(n=3);48 h后采用划痕实验观察各组HUVEC细胞的迁移率(n=3)。结果: 与NG组相比,HG组中hBMSC细胞活力和细胞内eNOS蛋白磷酸化水平降低(P<0.05),细胞培养液上清中NO、VEGF和IL-8含量减少(P<0.05);与HG组相比,HG+E2组中hBMSC的细胞活力和细胞中eNOS蛋白磷酸化水平显著增加(P<0.05),细胞培养基上清中NO、VEGF和IL-8含量增加(P<0.05),而当hBMSC细胞中Akt蛋白活性被抑制后,HG+E2+Triciribine组中上述结果指标呈反向变化(P<0.05)。此外,与HG-CM组相比,HG+E2-CM组中HUVECs的细胞活力和迁移能力显著增加(P<0.05),细胞凋亡比例降低(P<0.05),而与HG+E2-CM组相比,HG+E2+Triciribine-CM组中HUVECs的细胞活力和迁移能力降低(P<0.05),细胞凋亡比例增加(P< 0.05)。结论: 雌激素可能通过激活hBMSC细胞Akt/eNOS信号通路,促进NO、VEGF和IL-8的分泌,进而增加HUVECs的细胞活力和迁移能力,并抑制细胞凋亡的发生,对高糖诱导的HUVECs细胞损伤发挥保护作用。  相似文献   

6.
目的: 探讨抑制lncRNA PVT1对高糖诱导的血管内皮细胞的增殖,凋亡和氧化应激的影响。方法: 体外培养人脐静脉内皮细胞(HUVECs),分为四组:对照组(5.5 mmol/L葡萄糖),高糖组(30 mmol/L葡萄糖),高糖+siNC组(30 mmol/L葡萄糖+siNC,细胞转染阴性对照组),高糖+siPVT1组(30 mmol/L葡萄糖+siPVT1,抑制lncRNA PVT1组)。采用荧光定量PCR的方法检测转染后PVT1的表达水平。MTT检测siPVT1(短片段干扰RNA PVT1)对高糖诱导的HUVECs细胞增殖能力的影响。流式细胞术检测siPVT1对高糖诱导的HUVECs细胞ROS和凋亡水平。Western blot检测HUVECs细胞中凋亡相关蛋白如Bax,Bcl-2和cleaved-caspase-3的表达水平。结果: 与对照组比较,转染siPVT1后,PVT1的表达水平显著降低(P<0.05)。MTT结果显示,与对照组比较,培养24 h和48 h后高糖组中HUVECs细胞增殖活力均显著降低,与高糖+siNC组(阴性对照组)比较,培养24 h和48 h后,高糖+siPVT1组中的HUVECs细胞增殖活力显著增加(P<0.05)。流式细胞术检测结果表明,与对照组比较,高糖组HUVECs细胞中ROS和凋亡率均显著增加;和高糖+siNC组比较,高糖+siPVT1组中HUVECs细胞中ROS和凋亡率均有减少(P<0.05)。Western blot结果表明,与对照组比较,高糖组中cleaved-caspase-3和Bax表达水平均显著上调,Bcl-2的表达水平显著下调(P<0.05,P<0.01)。与高糖+siNC组比较,高糖+siPVT1组cleaved-caspase-3和Bax表达水平显著下调,Bcl-2的表达显著上调(P<0.05,P<0.01)。结论: 抑制lncRNA PVT1可以显著增加高糖诱导的HUVECs细胞增殖活力,减轻氧化应激,抑制细胞凋亡。  相似文献   

7.
目的探讨血小板反应蛋白1(TSP1)对高糖诱导的肾小管上皮细胞损伤及炎症因子分泌的影响。方法以肾小管上皮细胞为研究对象,通过转染TSP-1 shRNA(shTSP-1),沉默TSP-1基因,探讨下调TSP1对高糖条件下肾小管上皮细胞损伤的影响。肾小管上皮细胞依次分为:对照组(以5.6 mmol/L葡萄糖培养)、高糖组(以30 mmol/L葡萄糖培养)、NC+高糖组(对照慢病毒转染,以30 mmol/L葡萄糖培养)、干扰+高糖组(TSP1 shRNA慢病毒转染以30mmol/L葡萄糖培养)。Realtime PCR和Western Blot检测高糖对细胞中TSP1表达影响,同时检测TSP1 shRNA干扰效果。DCFH-DA法检测细胞中活性氧(ROS)水平,硫代巴比妥酸法检测培养液中丙二醛(MDA)含量,ELISA法检测培养液上清中肿瘤坏死因子-α(TNF-α)、白细胞介素-8(IL-8)含量,Annexin V-FITC/PI双染法检测细胞凋亡,Western Blot法检测细胞中活化的Caspase-3(c-caspase-3)蛋白水平。两组均数差异比较采用独立样本t检验,多组均数间差异比较采用单因素方差分析,组间两两比较采用SNK-q检验。结果高糖组细胞中TSP1mRNA和蛋白水平高于对照组(P 0.05)。干扰+高糖组细胞中TSP1 mRNA和蛋白水平低于高糖组(P 0.05)。与对照组比较,高糖组细胞中ROS水平升高,培养液中MDA、TNF-α、IL-8含量升高[(2.36±0.21)nmol/ml、(45.91±2.87)ng/ml、(25.42±3.26) ng/ml:(1.05±0.13)nmol/ml、(20.14±1.36)ng/ml、(12.98±1.63)ng/ml],差异有统计学意义(F=18.595,F=43.825,F=21.155,P 0.05);细胞凋亡率升高(P 0.05),细胞中c-caspase-3蛋白水平升高(P 0.05)。与高糖组和NC+高糖组比较,干扰+高糖组细胞中ROS水平降低,培养液中MDA、TNF-α、IL-8含量降低[(1.63±0.10)nmol/ml、(34.20±2.06)ng/ml、(18.75±1.62)ng/ml:(2.36±0.21) nmol/ml、(45.91±2.87)ng/ml、(25.42±3.26)ng/ml和(2.30±0.42)nmol/ml、(46.32±5.24) ng/ml、(26.91±2.74)ng/ml],差异具有统计学意义(F=18.595,F=43.825,F=21.155,P 0.05);细胞凋亡率降低,细胞中c-caspase-3蛋白水平降低(P 0.05)。结论高糖诱导肾小管上皮细胞中TSP1表达,下调其表达可以减少细胞分泌炎症因子,抑制高糖诱导的肾小管上皮细胞损伤。  相似文献   

8.
目的观察GPR30受体激动剂G1对高糖诱导的EA.hy926内皮细胞内质网应激(endoplasmic reticulum stress,ERS)的影响。方法选用EA.hy926内皮细胞为研究对象,分为3组:正常对照组(Con,17.51mmol/L葡萄糖)、高糖组(HG,33.3mmol/L葡萄糖)、高糖+G1组(HG+G1,HG+1umol/L G1),利用流式细胞术检测3组细胞凋亡率,Western blot法检测ERS相关分子Bip、IRE1、PERK及凋亡分子Bax、Bcl-2的表达变化,RT-PCR法检测Bip和CHOP的mRNA表达变化。结果 HG组与Con组比较,细胞凋亡率明显升高(P0.01),Bip、IRE1、PERK及凋亡分子Bax表达上调(P0.01,P0.05或P0.001),Bcl-2的表达下调(P0.01),Bip mRNA、CHOP mRNA表达上调(P0.001及P0.01);HG+G1组与HG组比较,细胞凋亡率明显降低(P0.05),Bip、IRE1、PERK及凋亡分子Bax表达下调(P0.05或P0.01),Bcl-2的表达上调(P0.05),Bip mRNA、CHOP mRNA表达下调(P0.001及P0.01)。结论 GPR30受体激动剂G1可抑制EA.hy926内皮细胞内质网应激。  相似文献   

9.
目的:探讨肌肽对高糖环境下心肌成纤维细胞中胶原生成的影响及作用机制。方法:原代培养心肌成纤维细胞,将细胞分为正常糖组(NG,5.5mmol/L glucose)、高糖组(HG,25mmol/L glucose)、高糖+10mmol/L肌肽组、高糖+20mmol/L肌肽组、高糖+40mmol/L肌肽组、高糖+SB组(HG+10μmol/L SB203580)、高糖+PD组(HG+10μmol/L PD98059)。ELISA检测胶原Ⅰ、Ⅲ的含量,Western blot检测TGF-β1、p-p38 MAPK和p-ERK(1/2)等蛋白的表达。结果:与正常糖组相比,高糖组中胶原Ⅰ和胶原Ⅲ含量增加(P<0.01);TGF-β1、p-p38和p-ERK等表达增加(P<0.01);与高糖组相比,高糖+肌肽组中胶原Ⅰ、Ⅲ、TGF-β1、p-p38、和p-ERK等均降低(P<0.05);高糖+SB组和高糖+PD组中胶原Ⅰ、Ⅲ表达减少(P<0.05)。结论:肌肽对心肌成纤维细胞中胶原生成具有抑制作用,且通过MAPK通路实现。  相似文献   

10.
目的:观察高糖环境下豚鼠膀胱Cajal样细胞形态学变化.方法:应用酶解法分离培养豚鼠膀胱Cajal样细胞,分为无糖组、正常对照组(葡萄糖浓度5mmo/L)、高糖组(葡萄糖浓度分别为15、30、60mmol/L),通过光学倒置显微镜及c-kit抗体染色后激光扫描共聚焦显微镜观察细胞形态.结果:葡萄糖浓度分别为30、60mmol/L组较无糖组、正常对照组(5mmoI/L)及15mmol/L组细胞数量减少,差异有统计学意义(P<0.05),蛋白标记后显示蛋白染色部位减少,有核着色迹象.结论:高糖环境可导致Cajal样细胞的形态异常,数量减少,可能引起其功能学的改变,提示其可能是糖尿病膀胱病变的的影响因素.  相似文献   

11.
目的探究Ghrelin对高糖诱导的内皮损伤的保护作用及机制。方法将人血管内皮细胞(HVECs)分为5mmol/L d-葡萄糖组、30mmol/L d-葡萄糖组、30mmol/Ld-葡萄糖+4mmol/L ghrelin组、30mmol/Ld-葡萄糖+20mmol/L ghrelin组和30mmol/L d-葡萄糖+100mmol/L ghrelin组。采用流式细胞术检测细胞凋亡,采用MTT法检测细胞活性,采用过氧化物敏感性荧光探针二氯二氢荧光素二乙酸酯(DCFH-DA)检测细胞内ROS水平,采用Western blot检测细胞胞浆中p65、HO-1、Bcl-2、Bax和cleaved caspase 9水平。结果与5mmol/L d-葡萄糖组比较,30mmol/L d-葡萄糖组细胞凋亡明显增加,活性降低,ROS生成增加和cytosolic p65和Bax水平均显著降低,HO-1、Bcl-2和cleaved caspase 9水平显著升高;与30mmol/L d-葡萄糖组比较,ghrelin治疗组的细胞活性明显增加,凋亡率明显降低,ROS产生减少,胞浆p65和Bax水平均显著升高,HO-...  相似文献   

12.
该研究观察了高糖高胰岛素对小鼠胰腺星状细胞(pancreatic stellate cells,PSCs)活化、增殖、细胞外基质(extracellular matrix,ECM)合成和半乳凝素-3(galectin-3,Gal-3)表达的影响。分离PSCs并培养至3~5代后进行实验。PSCs干预分为低糖对照组(5 mmol/L葡萄糖)、高糖组(25 mmol/L葡萄糖)、高胰岛素组(5 mmol/L葡萄糖+100 nmol/L胰岛素)、高糖高胰岛素组(25 mmol/L葡萄糖+100 nmol/L胰岛素)。细胞免疫荧光检测胰岛素受体(insulin receptor,IR)和胰岛素样生长因子-1型受体(insulin like growth factor-1 receptor,IGF-1R)在PSCs的表达;MTT法检测PSCs增殖;RT-PCR和Western blot测定平α-滑肌肌动蛋白(α-smooth muscle actin,α-SMA)、I型胶原(type I collagen,Col I)、纤连蛋白(fi bronectin,Fn)和Gal-3的m RNA和蛋白质水平。结果发现,PSCs细胞表达IR和IGF-1R;与低糖对照组相比,高糖组、高胰岛素组、高糖高胰岛素组均诱导PSCs活化、增殖并促进Col I、Fn生成和Gal-3表达,其中以高糖高胰岛素组最为显著。以上结果说明,2型糖尿病高糖、高胰岛素微环境可能促进PSCs活化、增殖、ECM生成和Gal-3表达,在一定程度上可导致胰腺纤维化。  相似文献   

13.
目的:观察高浓度葡萄糖诱导人晶状体上皮细胞发生上皮-间质转分化(epithelial-to-mesenchymal transition,EMT)。方法:将人晶状体上皮细胞HLE-B3系分别培养在正常葡萄糖浓度(5.5 mmol/L)DMEM培养基和高浓度葡萄糖(35.5 mmol/L)的DMEM培养基中24小时,于培养的0 h、3 h、6 h、12 h、24 h在倒置显微镜下观察细胞形态学变化,采用免疫荧光染色检测晶状体上皮细胞中EMT相关蛋白E-cadherin及α-SMA的表达变化。结果:与正常糖浓度组相比,随着时间的延长高糖组细胞逐渐丢失上皮细胞形态,细胞变细、变长,向纤维细胞的形态转变;同时随着时间的延长,高糖组晶状体上皮细胞中E-cadherin染色的荧光强度在各时间点均低于正常糖浓度组,而α-SMA的荧光强度却明显高于正常糖浓度组,在6 h和12 h时差异显著,有统计学意义(P0.01)。结论:高浓度葡萄糖诱导人晶状体上皮细胞发生上皮-间质转分化。  相似文献   

14.
目的:探讨高浓度葡萄糖对小鼠囊胚Caspase-8表达的影响.方法:通过促超排卵,获取妊娠3.5d小鼠囊胚,随机分成三组,即对照组(空白)、低糖组(葡萄糖浓度为7.5mmol/L)和高糖组(葡萄糖浓度为28.0mmol/L),分别培养在含0、7.5mmol/L和28.0mmol/L葡萄糖的M199培养基中,培养24h后,然后再吸出囊胚.每组随机吸取30个囊胚用免疫组织化学S-P法.检测不同浓度葡萄糖对小鼠囊胚Caspase-8表达状况,利用HPIAS-1000图像分析系统测定Caspase-8在以上三组中表达的平均光密度和平均阳性面积率.结果:Caspase-8表达结果:空白组中囊胚细胞胞浆中可见少量浅棕黄色颗粒,Caspase-8表达呈弱阳性.低糖组中囊胚细胞胞浆未见着色,Caspase-8表达呈阴性.高糖组囊胚细胞胞浆中可见较多的棕黄色颗粒,Caspase-8表达呈强阳性.空白组与低糖组囊胚Caspase-8表达的阳性面积率及平均光密度无显著性差异(P>0.05),高糖组与空白组和低糖组相比均存在显著性差异(P<0.01).结论:高浓度葡萄糖可诱导Caspase-8的过度表达,导致囊胚细胞数目过度减少,从而影响囊胚的正常发育和着床.  相似文献   

15.
该文探究了C1q/肿瘤坏死因子相关蛋白-3(C1q/TNF-related protein 3, CTRP3)在高糖条件下肾小管细胞胆固醇转运中的作用及机制。体外培养人肾小管上皮细胞HK-2,随机分为正常糖对照组(NG)、正常糖+CTRP3干预组(NG+CT)、高糖培养组(HG)、高糖培养+CTRP3干预组(HG+CT)、高糖培养+CTRP3干预组+siRNA转染组(HG+CT+siRNA)和高糖培养+CTRP3干预组+Sirt1 siRNA转染组(HG+CT+siSirt1)。试剂盒检测细胞内胆固醇含量及胆固醇流出情况; Filipin染色观察细胞内胆固醇蓄积情况;试剂盒检测Sirt1酶活性; Western blot检测CTRP3、Sirt1、ABCA1及LXRα的蛋白表达;实时定量PCR检测CTRP3的mRNA表达。结果显示,重组CTRP3蛋白干预能够抑制高糖条件下HK-2细胞胆固醇蓄积,上调ABCA1及LXRα的表达从而促进胆固醇外流;同时增强Sirt1的蛋白表达及活性;应用Sirt1 siRNA抑制Sirt1的表达后CTRP3的上述调控作用均消失了。以上结果提示, CTRP3对高糖条件下的肾小管细胞的保护作用,可能是部分通过调控Sirt1的表达促进高糖条件下肾小管细胞的胆固醇外流实现的。  相似文献   

16.
目的:建立胰岛细胞系INS-1E细胞的葡萄糖毒性模型。方法:将INS-1E细胞分别在不同葡萄糖浓度(5.5 mmol/L、16.7mmol/L、25 mmol/L、30 mmol/L)的1640完全培养基中培养不同时间(48 h、72 h、96 h、120 h),分别在不同时间点取细胞进行细胞功能检测,实时荧光定量PCR法检测胰岛素m RNA的表达,ELISA检测葡萄糖刺激的胰岛素的分泌。结果:与对照组相比,高糖浓度(5.5 mmol/L、16.7 mmol/L、25 mmol/L、30 mmol/L)培养基中培养48 h后,INS-1E细胞的胰岛素合成和分泌的功能均增加(P均0.05),随着培养基中葡萄糖浓度的升高以及培养时间的延长,INS-1E细胞胰岛素合成及分泌的功能逐渐下降,当在葡萄糖浓度为30 mmol/L的培养基中培养120 h后,胰岛素m RNA合成及葡萄糖刺激的胰岛素分泌均显著降低(P均0.01)。结论:INS-1E细胞在30 m M的葡萄糖中培养120 h形成稳定的葡萄糖毒性模型。  相似文献   

17.
高糖对培养大鼠心肌细胞牛磺酸转运的影响及其可能机制   总被引:1,自引:0,他引:1  
目的:观察不同浓度葡萄糖对细胞牛磺酸(taurine)转运功能的影响。方法:在培养的大鼠心肌细胞上,用^3H标记的牛磺酸测定细胞牛磺酸转运和竞争性定量RTPCR测定细胞牛磺酸转运体(TAUT)mRNA含量。结果:不同浓度葡萄糖(10~30mmol/L)孵育,抑制细胞^3H-牛磺酸转运,呈时间依赖性。与对照组比较,高糖(20mmol/L和30mmol/L)使心肌细胞牛磺酸摄入量显著减少,其^3H-牛磺酸转运的最大速率(Vmax)减少,心肌细胞TAUTmRNA含量较对照组减少。结论:高糖抑制心肌细胞牛磺酸转运,这与TAUT的牛磺酸结合位点减少和TAUT基因转录水平下调有关。  相似文献   

18.
目的:探讨白藜芦醇甙在高糖处理的大鼠心肌微血管内皮细胞损伤中的作用及其可能调控机制。方法:酶消法分离大鼠CMECs,高糖处理CMECs建立细胞损伤模型,实验随机分为6个组:对照组(葡萄糖浓度为5.5 mmol/L)、白藜芦醇甙组、高糖组(葡萄糖浓度为33 mmol/L)、高糖+白藜芦醇甙组、高糖+白藜芦醇甙+3-MA(自噬抑制剂)组和高糖+雷帕霉素(自噬诱导剂)组。白藜芦醇甙组和高糖+白藜芦醇甙组分别加入10μmol/L的白藜芦醇甙孵育24 h,高糖+白藜芦醇甙+3-MA组加入10μmol/L的白藜芦醇甙和10μmmol/L 3-MA孵育24 h,高糖+雷帕霉素组加入100 nmol/L的雷帕霉素孵育24小时。CCK-8实验检测大鼠CMECs增殖;Tunel法检测大鼠CMECs凋亡;FITC-葡聚糖清除实验检测单层CMECs通透性;Western blot检测LC3Ⅱ和p62的表达。结果:与对照组和白藜芦醇甙组相比,高糖组CMECs增殖能力降低(P<0.05),凋亡率显著增加(P<0.05),细胞通透性增加(P<0.05),LC3Ⅱ表达降低(P<0.05),p62的表达增加(P<0.05);与高糖组相比,高糖+白藜芦醇甙组和高糖+雷帕霉素组CMECs增殖能力增加(P<0.05),凋亡率显著降低(P<0.05),细胞通透性降低(P<0.05),LC3Ⅱ表达增加(P<0.05),p62的表达降低(P<0.05);与高糖+白藜芦醇甙组相比,高糖+白藜芦醇甙+3-MA组CMECs增殖能力降低(P<0.05),凋亡率显著增加(P<0.05),细胞通透性增加(P<0.05),LC3Ⅱ表达降低(P<0.05),p62的表达增加(P<0.05)。结论:白藜芦醇甙通过增加自噬减轻高糖处理的大鼠心肌微血管内皮细胞损伤。  相似文献   

19.
目的:观察糖尿病心肌病(DCM)是否有高尔基体应激(GAS)参与及外源性精胺心肌保护作用是否与调控GAS有关。方法:60只Wistar大鼠随机分为正常对照组(Control),糖尿病组(T1D,STZ 60 mg/kg一次性腹腔注射)和精胺组(T1D+Sp,精胺5 mg/(kg·d)腹腔注射),饲养12周。H9C2系大鼠心肌细胞随机分为正常对照组(Control,10%的FBS-DMEM培养)、高糖组(HG,10% FBS-DMEM+40 mmol/L葡萄糖)和精胺组(HG +Sp,10% FBS-DMEM+40 mmol/L葡萄糖+5 μmol/L精胺)。ELISA检测大鼠血清心肌肌酸激酶同工酶 (CK-MB)、心肌肌钙蛋白T (cTnT);Western blot测定高尔基体蛋白GOLPH3,GM130以及Cleaved Caspase3蛋白表达;免疫荧光检测GOLPH3细胞定位。结果:动物模型中,与正常组相比,糖尿病组大鼠血糖,血清心肌酶CK-MB和cTnT显著升高明显升高;体重,射血分数(EF)显著降低;心肌超微结构损伤明显(肌丝断裂,润盘消失等);同时GOLPH3和Cleaved Caspase3表达上调,GM130表达下调。细胞模型与大体结果一致,免疫荧光显示高尔基体出现应激性碎片化。外源性精胺处理可显著干预上述改变。结论:给予外源性精胺对糖尿病,诱导的心肌损伤具有干预作用,其机制与减轻高尔基体应激有关。  相似文献   

20.
目的探讨胰岛素样生长因子1(IGF-1)对体外培养小鼠囊胚细胞凋亡的抑制作用。方法获取妊娠3.5d小鼠囊胚,分别移入3个培养皿中,分别为A、B、C三组:A组(基础培养液);B组(基础培养液+30mmol/L的葡萄糖溶液);C组(基础培养液+30mmol/L的葡萄糖溶液+100ng/ml的人重组IGF-1)。连续培养72h后,采用免疫组化S-P法检测各组囊胚细胞中Bax和Fas的表达,利用计算机图像分析技术测量各组囊胚细胞中Bax和Fas蛋白表达的平均光密度和平均阳性面积。结果B组囊胚细胞中Bax和Fas的表达明显高于A组和C组(P0.05)结论IGF-1对高糖诱导的小鼠着床前早期胚胎凋亡起了抑制作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号