首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The quality of wheat grain is largely determined by the quantity and composition of storage proteins (prolamins) and depends on mechanisms underlying the regulation of expression of prolamin genes. The endosperm-specific wheat basic region leucine zipper (bZIP) factor storage protein activator (SPA) is a positive regulator that binds to the promoter of a prolamin gene. The aim of this study was to map SPA (the gene encoding bZIP factor SPA) and genomic regions associated with quantitative variations of storage protein fractions using F7 recombinant inbred lines (RILs) derived from a cross between Triticum aestivum "Renan" and T. aestivum "Récital". SPA was mapped through RFLP using a cDNA probe and a specific single nucleotide polymorphism (SNP) marker. Storage protein fractions in the parents and RILs were quantified using capillary electrophoresis. Quantitative trait loci (QTLs) for protein were detected and mapped on six chromosome regions. One QTL, located on the long arm of chromosome 1B, explained 70% of the variation in quantity of the x subunit of Glu-B1. Genetic mapping suggested that SPA is located on chromosome arm 1L and is also present in the confidence interval of the corresponding QTL for Glu-B1x on 1BL, suggesting that SPA might be a candidate gene for this QTL.  相似文献   

2.
Summary The iron storage ferritin light-chain gene exhibits multiple restriction enzyme fragments which have been mapped by analyzing sorted human chromosomes. A dual laser chromosome sorter was used to construct spot-blot filter panels representing 22 chromosome fractions. Hybridization of radiolabeled human ferritin-L gene probe to spot-blot panels revealed the ferritin-L gene on more than one chromosome. Miniaturized restriction enzyme analysis was used to map each of the ferritin-L restriction fragments uniquely to one of three chromosomes. This combination of sorted chromosome analyses provides a rapid method to map homologous DNA sequences located on more than one chromosome.  相似文献   

3.
Chromosomal mapping of the mouse IL-4 and human IL-5 genes   总被引:5,自引:0,他引:5  
We mapped the mouse interleukin (IL)-4 gene on chromosome 11 by restriction fragment length polymorphism using recombinant inbred mouse strains. The human IL-5 gene was mapped on chromosome 5q 23.3-31.1 by in situ hybridization. Because the granulocyte macrophage colony-stimulating factor (GM-CSF) and IL-3 genes were previously mapped on mouse chromosome 11 (within a 230-kb region) and human chromosome 5, the IL-4 and IL-5 genes are likely to cluster on the same chromosomes with the GM-CSF and IL-3 genes in both species.  相似文献   

4.
Evidence is presented for the assignment of the gene for adenosine kinase to Mus musculus chromosome 14 by synteny testing and karyotypic analysis of mouse X Chinese hamster somatic cell hybrid clones. ADOK and two enzymes previously mapped to mouse chromosome 14, NP and ES-10, were expressed concordantly in 29 hybrid clones. Chromosome analysis confirmed this assignment. Syntenic evidence is also presented using several clones of a gene transfer system in which the gene for human HPRT had integrated into modified mouse chromosome 14's.  相似文献   

5.
The gene encoding the mouse vasoactive intestinal polypeptide type 1 (VPAC1) receptor was cloned, and its structural organization was determined. The gene (Vipr1) is more than 16 kb in length and is divided into 13 exons. The 5'-flanking region is highly GC-rich and lacks an apparent TATA box, but contains a CCAAT box, three potential Sp1-binding sites, and two potential AP-2-binding sites. Promoter analysis of the 5'-flanking region of Vipr1 using a luciferase gene reporter system revealed that the isolated 5'-flanking region has functional promoter activity. The mouse Vipr1 gene is encoded by a single gene, which was mapped to the distal region of mouse chromosome 9. This region is syntenic with human chromosome 3p, where the human VPAC1 receptor gene has been mapped.  相似文献   

6.
Lee TG  Lee YJ  Kim DY  Seo YW 《Genetica》2010,138(11-12):1277-1296
Physical maps of chromosomes provide a framework for organizing and integrating diverse genetic information. DNA microarrays are a valuable technique for physical mapping and can also be used to facilitate the discovery of single feature polymorphisms (SFPs). Wheat chromosome arm 2BL was physically mapped using a Wheat Genome Array onto near-isogenic lines (NILs) with the aid of wheat-rice synteny and mapped wheat EST information. Using high variance probe set (HVP) analysis, 314 HVPs constituting genes present on 2BL were identified. The 314 HVPs were grouped into 3 categories: HVPs that match only rice chromosome 4 (298 HVPs), those that match only wheat ESTs mapped on 2BL (1), and those that match both rice chromosome 4 and wheat ESTs mapped on 2BL (15). All HVPs were converted into gene sets, which represented either unique rice gene models or mapped wheat ESTs that matched identified HVPs. Comparative physical maps were constructed for 16 wheat gene sets and 271 rice gene sets. Of the 271 rice gene sets, 257 were mapped to the 18-35?Mb regions on rice chromosome 4. Based on HVP analysis and sequence similarity between the gene models in the rice chromosomes and mapped wheat ESTs, the outermost rice gene model that limits the translocation breakpoint to orthologous regions was identified.  相似文献   

7.
The CEBPA gene encoding CCAAT/enhancer binding protein (C/EBP alpha) has been mapped to human chromosome 19 and the CEBPB (formerly TCF5) gene encoding NF-IL6 (C/EBP beta) to human chromosome 20 by Southern blot analysis of Chinese hamster x human and mouse x human somatic cell hybrids. CEBPA has been further mapped to 19q13.1 between the loci GPI and TGFB using human x hamster somatic cell hybrids containing restricted fragments of human chromosome 19. This position was confirmed by fluorescence in situ hybridization. Furthermore, CEBPB has been mapped to 20q13.1 by fluorescence in situ hybridization.  相似文献   

8.
The human gene encoding coproporphyrinogen oxidase is the defective gene in hereditary coproporphyria. This gene was mapped to chromosome band 3q12 using fluorescent in situ hybridization. The chromosomal localization was confirmed by cosegregation of the human gene with chromosome 3 in a panel of human/rodent somatic hybrids.  相似文献   

9.
The gene for the alpha i1 subunit of human guanine nucleotide binding (G) protein was mapped by in situ hybridization to chromosome 7 at band q21. The regional chromosomal location of the human alpha i1 gene was confirmed using human/mouse somatic-cell hybrid lines containing portions of human chromosome 7. Because the alpha i1 gene mapped near the cystic fibrosis locus and because an abnormal G protein might be expected to contribute to the pathophysiology of this disease, the alpha i1 gene was mapped with respect to the cystic fibrosis locus as defined by the Met oncogene and anonymous DNA marker pJ3.11. The location of the alpha i1 gene proved to be distinct from that of the cystic fibrosis locus.  相似文献   

10.
Loci from human chromosome 12 were mapped in cattle to compare the gene order between species. Polymorphisms were detected in cattle in six loci that had been mapped with high precision in humans. Four of these loci, LALBA, SLC2A3, SYT1, and TPI1, mapped to bovine chromosome 5, and one, PLA2G1B, mapped to bovine chromosome 17. The sixth locus, SLC2A3L, due to a fragment produced by the SLC2A3 primers, maps to the telomeric region of BTA18. The differences in gene order between human chromosome 12 and cattle chromosome 5, when these loci are added to others already mapped in cattle, show evidence of significant rearrangement in gene order requiring several evolutionary events. There is also evidence in cattle chromosome 5 of the interspersal of material conserved on human chromosome 22 into the material conserved on human chromosome 12, consistent with ZOOFISH analyses. This analysis indicates that the larger block near the centromere is conserved on the long arm of human chromosome 12 and the smaller block near the telomere is conserved as part of the short arm of human chromosome 12. The level of variation detected in the amplified cattle DNA was approximately 1 variant per 464 nucleotides of haploid DNA using single-strand conformation polymorphism analysis. This corresponds to a per individual level of 1 variant per 1, 961 nucleotides of haploid DNA. This confirms lower genetic variability in cattle compared to humans but indicates the potential for millions of single nucleotide polymorphisms in cattle.  相似文献   

11.
Two populations of single chromosome recombinant lines were used to map genes controlling flowering time on chromosome 5B of wheat, and one of the populations was also used to map a new frost resistance gene. Genetic maps were developed, mainly using microsatellite markers, and QTL analysis was applied to phenotypic data on the performance of each population collected from growth-room tests of flowering time and frost tolerance. Using a recombinant substitution-line mapping population derived from a cross between the substitution-line 'Chinese Spring' ('Cheyenne' 5B) and 'Chinese Spring' (CS), the gene Vrn-B1, affecting vernalization response, an earliness per se locus, Eps-5BL1, and a gene, Fr-B1, affecting frost resistance, were mapped. Using a 'Hobbit Sib' ('Chinese Spring' 5BL) x 'Hobbit Sib' recombinant substitution line mapping population, an earliness per se locus, Eps-5BL2 was mapped. The Vrn-B1 locus was mapped on the distal portion of the long arm of chromosome 5B, to a region syntenous with the segments of chromosomes 5A and 5D containing Vrn-A1 and Vrn-D1 loci, respectively. The two Eps-5BL loci were mapped close to the centromere with a 16-cM distance from each other, one in agreement with the position of a homoeologous locus previously mapped on chromosome 5H of barley, and suggested by the response of 'Chinese Spring' deletion lines. The Fr-B1 gene was mapped on the long arm of chromosome 5B, 40 cM from the centromeric marker. Previous comparative mapping data with rice chromosome 9 would suggest that this gene could be orthologous to the other Fr genes mapped previously by us on chromosomes 5A or 5D of wheat, although in a more proximal position. This study completes the mapping of these homoeoallelic series of vernalization requirement genes and frost resistance genes on the chromosomes of the homoeologous group 5 in wheat.  相似文献   

12.
The porcine retinoic acid receptor-γ gene (RARG) has been mapped by restriction fragment length polymorphism analysis to porcine chromosome 5. The placement of RARG distal to the diacylglycerol kinase gene increases the length Of the existing map (PiGMaP) and adds a fifth type-I marker to this sparsely mapped chromosome. This augments the homology of pig chromosome 5 and human chromosome 12 established by previous comparative mapping.  相似文献   

13.
A cDNA clone of the argininosuccinate lyase gene (ASL) was isolated from an adult human liver library by probing with synthetic oligonucleotide probes. This clone and a yeast genomic DNA fragment containing the ASL gene were sequenced using the M13-dideoxynucleotide method. Comparison of the yeast and human clones at the nucleotide and putative amino acid sequence levels indicated identities of 50 and 54%, respectively. The most conserved region of the yeast gene was used to detect human clones in the liver cDNA library to test phylogenetic screening capabilities of conserved genes. ASL was mapped to human chromosome 7pter----q22 using human-mouse somatic cell hybrid DNA and further mapped by in situ hybridization to chromosome 7cen----q11.2 on human metaphase chromosomes. The probe also detected a sequence on chromosome 22. Somatic cell hybrid DNA digested with PvuII revealed a mouse polymorphism between Balb/c and C3H mice in the ASL gene.  相似文献   

14.
A large number of microclones obtained by microdissection of the mouse X chromosome have been mapped using an interspecific Mus domesticus/Mus spretus cross. Clones displaying close linkage to a number of loci of known phenotype but unknown gene product, such as mdx (X-linked muscular dystrophy), have been obtained. Over a central 30 cM span of the mouse X chromosome, 17 clones have been mapped and ordered at a sufficient density to contemplate the complete physical mapping of this region that will aid in the isolation of a number of unidentified genes. Some of the mapped microclones detect moderately repetitive sequences that were clustered in several discrete regions of the mouse X chromosome.  相似文献   

15.
In humans, methylmalonyl acidemia is caused by a deficiency of L-methylmalonyl-CoA mutase (MUT) controlled by a gene that has been mapped to chromosome 6. The mouse homolog of this gene has now been mapped to mouse chromosome 17. Recombinant inbred and congenic strains place the mouse Mut locus 1.06 cM distal to H-2, between Pgk-2 and Ce-2. The relative order of syntenic probes flanking H-2 on mouse chromosome 17 and HLA on human chromosome 6 is shown to be different.  相似文献   

16.
Despite intensive studies of muscular dystrophy of chicken, the responsible gene has not yet been identified. Our recent studies mapped the genetic locus for abnormal muscle (AM) of chicken with muscular dystrophy to chromosome 2q using the Kobe University (KU) resource family, and revealed the chromosome region where the AM gene is located has conserved synteny to human chromosome 8q11-24.3, where the beta-1 syntrophin (SNTB1), syndecan 2 (SDC2) and Gem GTPase (GEM) genes are located. It is reasonable to assume those genes might be candidates for the AM gene. In this study, we cloned and sequenced the chicken SNTB1, SDC2 and GEM genes, and identified sequence polymorphisms between parents of the resource family. The polymorphisms were genotyped to place these genes on the chicken linkage map. The AM gene of chromosome 2q was mapped 130 cM from the distal end, and closely linked to calbindin 1 (CALB1). SNTB1 and SDC2 genes were mapped 88.5 cM distal and 27.6 cM distal from the AM gene, while the GEM gene was mapped 18.5 cM distal from the AM gene and 9.1 cM proximal from SDC2. Orthologues of SNTB1, SDC2 and GEM were syntenic to human chromosome 8q. SNTB1, SDC2 and GEM did not correspond to the AM gene locus, suggesting it is unlikely they are related to chicken muscular dystrophy. However, this result also suggests that the genes located in the proximal region of the CALB1 gene on human chromosome 8q are possible candidates for this disease.  相似文献   

17.
The gene for human complement component C9 has been mapped to chromosome 5. This was achieved by using a novel application of the polymerase chain reaction to amplify specifically the human C9 gene on a background of rodent DNA in somatic cell hybrids. The assignment to chromosome 5 was confirmed by in situ hybridization to human metaphase chromosomes, giving a regional localization of 5p13.  相似文献   

18.
Linked markers flanking the gene for multiple endocrine neoplasia type 2A   总被引:11,自引:0,他引:11  
The inherited cancer syndrome multiple endocrine neoplasia type 2A (MEN2A) has recently been mapped to chromosome 10. We have typed 29 families with this disorder with DNA markers from the pericentromeric region of chromosome 10. Two markers, RBP3 and MCK2, were tightly linked to the MEN2A gene at recombination fractions of less than 3%. Multipoint analysis of the linkage data suggests that the gene is located within a 3-cM interval defined by the markers RBP3/MCK2 on one side and TB14.34 on the other. No evidence for locus heterogeneity was detected in any of the 27 families from 14 countries who were informative for the markers tested. The data confirm and refine the original assignment and provide the basis for presymptomatic screening for this disorder.  相似文献   

19.
The gene encoding the beta-subunit of rod photoreceptor cGMP phosphodiesterase (gene symbol PDEB, homolog of the mouse rd gene) is mapped to human chromosome 4 using somatic cell hybrids and further localized to the chromosome band 4p16 using in situ hybridization. A mutation in the mouse gene underlies the recessive trait of retinal degeneration in the rd mouse. Thus, the human homolog is a candidate for lesions causing retinal degeneration.  相似文献   

20.
Our previous studies revealed that the genetic locus for chicken muscular dystrophy of abnormal muscle (AM) mapped to chromosome 2q, and that the region showed conserved synteny with human chromosome 8q11-24.3. In the current study, we mapped the chicken orthologues of genes from human chromosome 8q11-24 in order to identify the responsible gene. Polymorphisms in the chicken orthologues were identified in the parents of the resource family. Twenty-three genes and expressed sequence tags (ESTs) were mapped to chicken chromosome 2 by linkage analysis. The detailed comparative map shows a high conservation of synteny between chicken chromosome 2q and human chromosome 8q. The AM locus was mapped between [inositol(myo)-1(or4)-monophosphatase 1] (IMPA1) gene and [core-binding factor, runt domain, alpha-subunit 2; translocated to 1; cyclin D-related] (CBFA2T1) gene. The genes located between IMPA1 and CBFA2T1 are the most likely candidates for chicken muscular dystrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号