首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ionic currents underlying the action potential of Rana pipiens oocytes   总被引:1,自引:0,他引:1  
Ionic currents in immature, ovulated Rana pipiens oocytes (metaphase I) were studied using the voltage-clamp technique. At this stage of maturity the oocyte can produce action potentials in response to depolarizing current or as an "off response" to hyperpolarizing current. Reducing external Na+ to 1/10 normal (choline substituted) eliminated the action potentials and both the negative-slope region and zero-crossing of the I-V relation. Reducing external Cl- to 1/10 or 1/100 normal (methanesulfonate substituted) lengthened the action potential. The outward current was reduced and a net inward current was revealed. By changing external Na+, Cl-, and K+ concentrations and using blocking agents (SITS, TEA), three voltage- and time-dependent currents were identified, INa, IK and ICl. The Na+ current activated at about 0 mV and reversed at very positive values which decreased during maturation. Inward Na+ current produced the upstroke of the action potential. During each voltage-clamp step the Na+ current activated slowly (seconds) and did not inactivate within many minutes. The Na+ current was not blocked by TTX at micromolar concentrations. The K+ current was present only in the youngest oocytes. Because IK was superimposed on a large leakage current, it appeared to reverse at the resting potential. When leakage currents were subtracted, the reversal potential for IK was more negative than -110 mV in Ringer's solution. IK was outwardly rectifying and strongly activated above -50 mV. The outward K+ current produced an after hyperpolarization at the end of each action potential. IK was blocked completely and reversibly by 20 mM external TEA. The Cl- current activated at about +10 mV and was outwardly rectifying. ICl was blocked completely and reversibly by 400 microM SITS added to the bathing medium. This current helped repolarize the membrane following an action potential in the youngest oocytes and was the only repolarizing current in more mature oocytes that had lost IK. The total leakage current had an apparently linear I-V relation and was separated into two components: a Na+ current (IN) and a smaller component carried by as yet unidentified ions.  相似文献   

2.
1. Using the perforated patch recording, the effects of ATP on membrane current were investigated in mouse peritoneal macrophages. 2. Extracellularly applied ATP induced a biphasic current consisting of a initial inward current [Ii(ATP)] followed by an outward current [Io(ATP)]. These currents were associated with a marked increase in conductance at their peaks. 3. Ii(ATP) reversed close to 0 mV and was attenuated by removal of external Na+. 4. Io(ATP) reversed near -80 mV and was increased by decreasing the external concentration of K+. 5. Io(ATP) was completely abolished by removal of external Ca2+, treatment with an intracellular Ca2+ chelator, the acetoxymethyl ester of 1,2-bis (2-aminophenoxy) ethane-N,N,N',N'-tetra acetic acid (BAPTA-AM) and bath applied quinidine but not tetraethylammonium (TEA) or apamin. 6. These results suggest that Ii(ATP) and Io(ATP) are due to an activation of nonspecific cationic and Ca2(+)-dependent K+ conductances, respectively, and raise the possibility that the putative ATP receptor may be important in regulating macrophage functions, motility, phagocytosis and cytokines secretion.  相似文献   

3.
1. Membrane currents have been recorded from the soma of a bifunctional basalar/coxal depressor motoneurone in the metathoracic ganglion of the cockroach (Periplaneta americana) using a two-electrode voltage-clamp technique. 2. This motoneurone cell body is normally inexcitable when studied under current-clamp. Appropriate depolarizing command steps evoke rapid transient outward currents and late outward currents. 3. Late outward currents are dominated by a Ca-dependent component that confers an N-shaped I-V relationship on the neurone. 4. The Ca-dependent outward current is suppressed by Cd2+ (1 mM), Mn2+ (5 mM) or verapamil (50 microM). 5. Externally applied tetraethylammonium ions (TEA+) (25 mM) block the Ca-dependent current, but also appear to suppress a component of the late outward current that is independent of Ca2+. 6. Aminopyridines cause only minor suppression of late outward currents, but shift the peak in the N-shaped I-V relationship to more negative potentials. 7. The reversal potential of tail currents recorded following pre-pulses to +50 mV were dependent upon the pre-pulse duration; increasing the duration from 10 to 50 msec caused a +17 mV shift in tail current reversal potential. 8. A five-fold increase in the K+ concentration of the solution bathing the preparation only produced small and inconsistent changes in the reversal potential of tail currents. 9. Five-fold reduction in external Cl- caused no change. 10. The dependence of tail current reversal potential upon pre-pulse duration and the limited effect of alterations in the composition of the bathing solution are discussed in the context of restricted ion movements near the external surface of the cell membrane.  相似文献   

4.
M Ichinose  N Hara  M Sawada  T Maeno 《FEBS letters》1992,314(3):458-460
Neuromedin C (NmC) induced an outward current (Io(NmC)) in macrophages. Reversal potentials were dependent on external K+ concentrations ([K+]o) and independent of [Cl-]o. Tetraethylammonium (TEA) and quinidine effectively suppressed Io(NmC). Charybdotoxin (ChTX) and apamin had little effect. Io(NmC) was abolished in Ca(2+)-free EGTA-containing solution. These results suggest that MnC activates a Ca(2+)-dependent K+ current (IK,Ca) and can modulate activities in macrophages.  相似文献   

5.
Segments from the nonspiking peripheral dendrites of a crustacean coxal receptor (T fiber) were studied using the voltage clamp technique. The peripheral endings of the T fiber are sensitive to stretch applied to a specialized receptor muscle by rotation of the coxa. The intraganglionary portion of the T fiber is presynaptic to the motor neurons innervating the coxal muscle. Depolarizing commands activated three separate fast channels: (i) a transient inward sodium current, INa, which is blocked by tetrodotoxin (TTX); (ii) a transient outward current, Io1 , having the same voltage-dependent characteristics as INa; and (iii) a second, longer-lasting, outward current, Io2 . Both INa and Io1 were inactivated when segments were clamped at voltages more positive than -50 mV, whereas Io2 could be activated at voltages more positive than -50 mV. Io1 and Io2 were blocked by 4-aminopyridine (4-AP) and by tetraethylammonium (TEA), although Io2 shows a greater sensitivity to TEA than Io1 . It is suggested that Io1 may be a factor in determining the nonspiking behavior of the dendrites and that Io2 may limit the stretch-induced depolarization in the dendrite to a value more negative than that at which the maximum rate of transmitter release occurs. In addition to the three fast currents, the presence of a slow inward and slow outward current could also be demonstrated. The effects of the slow currents were longer in segments cut from the proximal part of the dendrites.  相似文献   

6.
Effects of abscisic acid on K+ channels in Vicia faba guard cell protoplasts   总被引:11,自引:0,他引:11  
Potassium channels were resolved in Vicia faba guard cell protoplasts by patch voltage-clamp. Whole-cell currents and single K+ channels had linear instantaneous current-voltage relations, reversing at the calculated Nernst potential for K+. Whole cell K+ currents activated exponentially during step depolarizations, with half-activation times of 400-450 msec at +80 mV and 90-110 msec at +150 mV. Single K+ channel conductance was 65 +/- 5 pS with a mean open time of 1.25 +/- 0.30 msec at 150 mV. Potassium channels were blocked by internal Cs+ and by external TEA+, but they were insensitive to external 4-aminopyridine. Application of 10 microM abscisic acid increased mean open time and caused long-lasting bursts of channel openings. Since internal and external composition can be controlled, patch-clamped protoplasts are ideal systems for studying the role of ion channels in plant physiology.  相似文献   

7.
The objective of this study was to determine the effects of anion replacement on volume-sensitive anion current in guinea-pig ventricular myocytes. Myocytes in the conventional whole-cell voltage-clamp configuration were superfused and dialysed with Na(+)-, K(+)-, and Ca(2+)-free solution, and exposed to external 75 mM Cl- solution of one-half normal osmolality. Prolonged exposures to hyposmotic solution promoted the development of outwardly-rectifying currents that were inactivated at high positive potentials and reversed in a Cl(-)-dependent manner (50 mV per decade pipette Cl- concentration). Replacement of external Cl- by iodide and aspartate affected the reversal potential (E(rev)) and slope conductance of the volume-sensitive current. Relative permeabilities calculated from changes in E(rev) were 1.49 +/- 0.09, 1.00, and 0.29 +/- 0.04 for iodide, Cl-, and aspartate, respectively; relative slope conductances between E(rev) and E(rev) + 40 mV were 1.21 +/- 0.09, 1.00, and 0.43 +/- 0.07, respectively. Replacement of Cl- also affected the time dependence of the volume-sensitive current; replacement by iodide reversibly enhanced the decay of outward current at positive potentials, whereas replacement by aspartate reduced it. These results are compared with earlier findings on noncardiac time- and voltage-dependent anion current activated by hyposmotic solution.  相似文献   

8.
Transient outward currents in rat saphenous arterial myocytes were studied using the perforated configuration of the patch-clamp method. When myocytes were bathed in a Na-gluconate solution containing TEA to block large-conductance Ca2+-activated K+ (BK) currents, depolarizing pulses positive to +20 mV from a holding potential of -100 mV induced fast transient outward currents. The activation and inactivation time constants of the current were voltage dependent, and at +40 mV were 3.6 +/- 0.8 ms and 23.9 +/- 6.4 ms (n = 4), respectively. The steady-state inactivation of the transient outward current was steeply voltage dependent (z = 1.7), with 50% of the current inactivated at -55 mV. The current was insensitive to the A-type K+ channel blocker 4-AP (1-5 mM), and was modulated by external Ca, decreasing to approximately 0.85 of control values upon raising Ca2+ from 1 to 10 mM, and increasing approximately 3-fold upon lowering it to 0.1 mM. Transient outward currents were also recorded following replacement of internal K+ with either Na+ or Cs+, raising the possibility that the current was carried by monovalent ions passing through voltage-gated Ca2+ channels. This hypothesis was supported by the finding that the transient outward current had the same inactivation rate as the inward Ba2+ current, and that both currents were effectively blocked by the L-type Ca2+ channel blocker, nifedipine and enhanced by the agonist BAYK8644.  相似文献   

9.
Depolarization-activated outward currents of bushy neurones of 6-14-day-old Wistar rats have been investigated in a brain slice preparation. Under current-clamp, the cells produced a single action potential at the beginning of suprathreshold depolarizing current steps. On voltage-clamp depolarizations, the cells produced a mixed outward K+ current that included a component with rapid activation and rapid inactivation, little TEA+ sensitivity, a half-inactivation voltage of -77 +/- 2 mV (T = 25 degrees C; n = 7; Mean +/- S.E.M.) and single-exponential recovery from inactivation (taurecovery= 12 +/- 1 ms at -100 mV; n=3). This transient component was identified as an A-type K+ current. Bushy cells developed a high-threshold TEA-sensitive K+ current that exhibited less prominent inactivation. These characteristics suggested that this current was associated with the activation of delayed rectifier K+ channels. Bushy neurones also possessed a low-threshold outward K+ current that showed partial inactivation and high 4-aminopyridine sensitivity. Part of this current component was blocked by 200 nmol/l dendrotoxin-I. Application of 100 micromol/l 4-aminopyridine changed the firing behaviour of the bushy neurones from the primary-like pattern to a much less rapidly adapting one, suggesting that the low-threshold current might have important roles in maintaining the physiological function of the cells.  相似文献   

10.
Insect olfactory receptor neurons (ORNs) grown in primary cultures were studied using the patch-clamp technique in both conventional and amphotericin B perforated whole-cell configurations under voltage-clamp conditions. After 10-24 days in vitro, ORNs had a mean resting potential of -62 mV and an average input resistance of 3.2 GOmega. Five different voltage-dependent ionic currents were isolated: one Na(+), one Ca(2+) and three K(+) currents. The Na(+) current (35-300 pA) activated between -50 and -30 mV and was sensitive to 1 microM tetrodotoxin (TTX). The sustained Ca(2+) current activated between -30 and -20 mV, reached a maximum amplitude at 0 mV (-4.5 +/- 6.0 pA) that increased when Ba(2+) was added to the bath and was blocked by 1 mM Co(2+). Total outward currents were composed of three K(+) currents: a Ca(2+)-activated K(+) current activated between -40 and -30 mV and reached a maximum amplitude at +40 mV (605 +/- 351 pA); a delayed-rectifier K(+) current activated between -30 and -10 mV, had a mean amplitude of 111 +/- 67 pA at +60 mV and was inhibited by 20 mM tetraethylammonium (TEA); and, finally, more than half of ORNs exhibited an A-like current strongly dependent on the holding potential and inhibited by 5 mM 4-aminopyridine (4-AP). Pheromone stimulation evoked inward current as measured by single channel recordings.  相似文献   

11.
Natronomonas pharaonis halorhodopsin (pHR) is an archaeal rhodopsin functioning as an inward-directed, light-driven Cl- pump. To characterize the electrophysiological features of the Cl- pump activity of pHR, we expressed pHR in Xenopus laevis oocytes and analyzed its photoinduced Cl- pump activity using the two-electrode voltage-clamp technique. Photoinduced outward currents were observed only in the presence of Cl-, Br-, I-, NO3-, and SCN-, but not in control oocytes, indicating that photoinduced anion currents were mediated by pHR. The relationship between photoinduced Cl- current via pHR and the light intensity was linear, demonstrating that transport of Cl- is driven by a single-photon reaction and that the steady-state current is proportional to the excited pHR molecule. The current-voltage relationship for pHR-mediated photoinduced currents was also linear between -150 mV and +50 mV. The slope of the line describing the current-voltage relationship increased as the number of the excited pHR molecules was increased by the light intensity. The reversal potential (VR) for Cl- as the substrate for the anion pump activity of pHR was about -400 mV. The value for VR was independent of light intensity, meaning that the VR reflects the intrinsic value of the excited pHR molecule. The value of VR changed significantly for the R123K mutant of pHR. We also show that the Cl- pump activity of pHR can generate a substantial negative membrane potential, indicating that pHR is a very potent Cl- pump. We have also analyzed the kinetics of voltage-dependent Cl- pump activity as well as that of the photocycle. Based on these data, a kinetic model for voltage-dependent Cl- transport via pHR is presented.  相似文献   

12.
Ether-à-go-go-related gene (ERG) K channels have been implicated in the generation of pacemaker activities in the heart. To study the presence and function of ERG K channels in the pacemaker cells of the small intestine [the interstitial cells of Cajal (ICC)], a combination of patch-clamp techniques, tissue and live cell immunohistochemistry, RT-PCR, and in vitro functional studies were performed. Nonenzymatically isolated ICC in culture were identified by vital staining and presence of rhythmic inward currents. RT-PCR showed the presence of ERG mRNA in the intestinal musculature, and immunohistochemistry on tissue and cultured cells demonstrated that protein similar to human ERG was concentrated on ICC in the Auerbach's plexus region. Whole cell ERG K+ currents were evoked on hyperpolarization from 0 mV (but not from -70 mV) up to -120 mV and showed strong inward rectification. The currents were inhibited by E-4031, cisapride, La3+, and Gd3+ but not by 50 microM Ba2+. The ERG K+ inward current had a typical transient component with fast activation and inactivation kinetics followed by significant steady-state current. E-4031 also inhibited tetraethylammonium (TEA)-insensitive outward current indicating that the ERG K+ current is operating at depolarizing potentials. In contrast to TEA, blockers of the ERG K+ currents caused marked increase in tissue excitability as reflected by an increase in slow-wave duration and an increase in superimposed action potential activity. In summary, ERG K channels in ICC contribute to the membrane potential and play a role in regulation of pacemaker activity of the small intestine.  相似文献   

13.
Voltage-clamped mature, jelly-intact Xenopus eggs were used to carefully examine the ionic currents crossing the plasma membrane before, during, and after fertilization. The bulk of the fertilization current was transient, of large amplitude, and reversed at the predicted Cl- reversal potential. However, the large amplitude fertilization current was preceded by a small, step-like increase in holding current. This small increase in holding current is referred to in this paper as Ion to acknowledge its qualitative similarity to the Ion current previously described in the sea urchin. It was observed in both fertilized and artificially activated eggs, and was found to be unaffected by 10 mm tetra-ethyl ammonium (TEA), a concentration found to block K+ currents in Rana pipiens. Current-voltage relationships are presented for the large fertilization potential, and show that the fertilization currents have a marked outward rectification and are voltage sensitive. These properties are in contrast to the total lack of rectification and slight voltage sensitivity seen before or after the fertilization currents. The time required for sperm to fertilize the egg was found to be voltage dependent with a relatively more depolarized voltage requiring a longer time for fertilization to occur. The percentage of eggs blocked with varying potential levels was determined and this information was fitted to a modified Boltzmann equation having a midpoint of -9 mV.  相似文献   

14.
Sodium channel gating currents in frog skeletal muscle   总被引:7,自引:5,他引:2       下载免费PDF全文
Charge movements similar to those attributed to the sodium channel gating mechanism in nerve have been measured in frog skeletal muscle using the vaseline-gap voltage-clamp technique. The time course of gating currents elicited by moderate to strong depolarizations could be well fitted by the sum of two exponentials. The gating charge exhibits immobilization: at a holding potential of -90 mV the proportion of charge that returns after a depolarizing prepulse (OFF charge) decreases with the duration of the prepulse with a time course similar to inactivation of sodium currents measured in the same fiber at the same potential. OFF charge movements elicited by a return to more negative holding potentials of -120 or -150 mV show distinct fast and slow phases. At these holding potentials the total charge moved during both phases of the gating current is equal to the ON charge moved during the preceding prepulse. It is suggested that the slow component of OFF charge movement represents the slower return of charge "immobilized" during the prepulse. A slow mechanism of charge immobilization is also evident: the maximum charge moved for a strong depolarization is approximately doubled by changing the holding potential from -90 to -150 mV. Although they are larger in magnitude for a -150-mV holding potential, the gating currents elicited by steps to a given potential have similar kinetics whether the holding potential is -90 or -150 mV.  相似文献   

15.
Two-microelectrode voltage clamp studies were performed on the somata of Hermissenda Type B photoreceptors that had been isolated by axotomy from all synaptic interaction as well as any impulse-generating (i.e., active) membrane. In the presence of 2-10 mM 4-aminopyridine (4-AP) and 100 mM tetraethylammonium ion (TEA), which eliminated two previously described voltage-dependent potassium currents (IA and the delayed rectifier), a voltage-dependent outward current was apparent in the steady state responses to command voltage steps more positive than -40 mV (absolute). This current increased with increasing external Ca++. The magnitude of the outward current decreased and an inward current became apparent following EGTA injection. Substitution of external Ba++ for Ca++ also made the inward current more apparent. This inward current, which was almost eliminated after being exposed for approximately 5 min to a solution in which external Ca++ was replaced with Cd++, was maximally activated at approximately 0 mV. Elevation of external potassium allowed the calcium (ICa++) and calcium-dependent K+ (IC) currents to be substantially separated. Command pulses to 0 mV elicited maximal ICa++ but no IC because no K+ currents flowed at their new reversal potential (0 mV) in 300 mM K+. At a holding potential of -60 mV, which was now more negative than the potassium equilibrium potential, EK+, in 300 mM K+, IC appeared as an inward tail current after positive command steps. The voltage dependence of ICa++ was demonstrated with positive steps in 100 mM Ba++, 4-AP, and TEA. Other data indicated that in 10 mM Ca++, IC underwent pronounced and prolonged inactivation whereas ICa++ did not. When the photoreceptor was stimulated with a light step (with the membrane potential held at -60 mV), there was also a prolonged inactivation of IC. In elevated external Ca++, ICa++ also showed similar inactivation. These data suggest that IC may undergo prolonged inactivation due to a direct effect of elevated intracellular Ca++, as was previously shown for a voltage-dependent potassium current, IA. These results are discussed in relation to the production of training-induced changes of membrane currents on retention days of associative learning.  相似文献   

16.
The role of the soma of spiny lobster olfactory receptor cells in generating odor-evoked electrical signals was investigated by studying the ion channels and macroscopic currents of the soma. Four ionic currents; a tetrodotoxin-sensitive Na+ current, a Ca++ current, a Ca(++)-activated K+ current, and a delayed rectifier K+ current, were isolated by application of specific blocking agents. The Na+ and Ca++ currents began to activate at -40 to -30 mV, while the K+ currents began to activate at -30 to -20 mV. The size of the Na+ current was related to the presence of a remnant of a neurite, presumably an axon, and not to the size of the soma. No voltage-dependent inward currents were observed at potentials below those activating the Na+ current, suggesting that receptor potentials spread passively through the soma to generate action potentials in the axon of this cell. Steady-state inactivation of the Na+ current was half-maximal at -40 mV. Recovery from inactivation was a single exponential function that was half-maximal at 1.7 ms at room temperature. The K+ currents were much larger than the inward currents and probably underlie the outward rectification observed in this cell. The delayed rectifier K+ current was reduced by GTP-gamma-S and AIF-4, agents which activate GTP-binding proteins. The channels described were a 215-pS Ca(++)-activated K+ channel, a 9.7-pS delayed rectifier K+ channel, and a 35-pS voltage-independent Cl- channel. The Cl- channel provides a constant leak conductance that may be important in stabilizing the membrane potential of the cell.  相似文献   

17.
Niflumic acid (NA), a putative Cl(-)-channel blocker, has provided pharmacological evidence that Cl(-)-channel closures mediate hyperpolarization caused by NO in gastrointestinal smooth muscle. However, NA caused concentration-dependent relaxation of canine lower esophageal sphincter (LES) and failed to inhibit NO-mediated relaxations. DIDS also did not inhibit NO-mediated relaxations, but did abolish them when present with 20 mM TEA (tetraethyl ammonium ion), which was also ineffective alone. TEA reversed NA-induced relaxations, but with NA it did not inhibit NO-mediated relaxations. We investigated the modes of action of these agents further. Neither nerve-function block nor block of NOS activity affected the inhibition of LES tone by NA. In patch-clamp studies, NA increased outward currents from -30 to + 90 mV when [Ca2+]pipette was 50 nM. This was prevented by 20 mM TEA, but not by prior inhibition of NOS. At 200 nM [Ca2+]pipette, TEA markedly reduced outward currents, but did not prevent the increase from subsequent NA. In contrast, under similar conditions, application of DIDS after 20 mM TEA further reduced outward currents. When the patch pipette contained CsCl and TEA to block K+ currents, NA had no significant effect on currents between -50 and +90 mV. Thus, NA acted by opening K+ channels: some TEA-sensitive and some not. It had no detectable effect on currents when K+ channels were blocked. We conclude that NA is an unreliable pharmacological tool to evaluate Cl(-)-channel contributions to smooth muscle function. DIDS did not open K+ channels. Decreases in outward currents from DIDS may result from inhibition of K+ currents or currents carried by Cl- at depolarized membrane potentials.  相似文献   

18.
TTX and TEA-insensitive permeabilities were studied in the crab giant axon under voltage-clamp. Membrane currents in the presence of internal TEA (40 mmol/l) and external TTX (300 nmol/l) may be analyzed as the sum of two components: a linear component, identified as the so-called leakage current, and a non-linear component, identified as a TEA-insensitive potassium channel. Ion permeability ratio of the TTX and TEA insensitive cation channel calculated from reversal potential shows the following sequence pK+:pNa+:pCs+:pRb+:pNH+4 = 1.00:0.16:0.16:0.09:0.06. TEA-insensitive outward currents, carried mainly by Cs+, may be recorded in the presence of different external solutions. Voltage-dependence and equilibrium potential of this channel in physiological conditions allows to postulate its contribution to maintain the cell depolarized during repetitive firing.  相似文献   

19.
Human red blood cells (RBC) can be studied by means of whole-cell and nystatin-perforated patch-clamp techniques. In 85% of the whole-cell experiments (n=86) and 69% of the perforated-patch recordings (n=13), steps to positive potentials, from a holding potential of 0 mV, induced a slow-activating non-inactivating persistent outward current which reverted at about 0 mV. The current activation phase fitted well with a two-component exponential curve. Half-maximal conductance was reached at about 42 mV. Na+ and K+ carried this current, which was not affected by 20 nM charybdotoxin or 20 mM TEA, but was reduced following a partial substitution of extracellular Cl- by tartrate. This current has characteristics similar to the single-channel currents already described in RBC and may be involved in the rapid adaptations of these cells in the circulation.  相似文献   

20.
Two types of potassium current in rabbit cultured Schwann cells   总被引:1,自引:0,他引:1  
Voltage-gated outward currents were studied in rabbit cultured Schwann cells with the 'whole-cell' configuration of the patch-clamp method. Four components of such currents were identified. The first, which was abolished by replacement of the external chloride ions by the large impermeant anion gluconate, was identified as a chloride current. The second and third were identified as potassium currents. One type of potassium current was reduced substantially by either 4-aminopyridine (4-AP) or tetraethylammonium ion (TEA). Its sensitivity to blocking by 4-AP was highly voltage-dependent: the equilibrium dissociation constant (K) was threefold greater when measured at +10 mV than when measured at -40 mV (where it was about 80 microM). The second type of potassium current was relatively insensitive to 4-AP, but was blocked by TEA. The TEA sensitivity of the two types of potassium currents was similar and displayed no obvious voltage-dependence (K approximately 200 microM). The fourth component of current was not reduced by 4-AP or TEA at concentrations less than 10 mM. Whether or not this last component is a potassium current is unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号