首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, we have found a transient intermediate on the folding pathway of src SH3. Intending to investigate the structure of the transient intermediate, we tested a mutant of src SH3, named A45G, using circular dichroism, fluorescence and X-ray solution scattering, and incidentally found that it forms a stable alpha-helix-rich intermediate (I(eq)) (different from the native beta-sheet-based secondary structure) at pH 3.0, but contains only beta-sheets at pH 6.0, whereas wild-type SH3 forms only beta-sheets at both pH 3.0 and pH 6.0. The intermediate I(eq) shows a circular dichroism measured at theta(222)=-10,300 deg.cm(2) dmol(-1), indicating a 31% alpha-helix proportion, as estimated by the CONTIN program. X-ray scattering gave the radius of gyration for I(eq) as 19.1 A at pH 3.0 and 15.4 A at pH 6.0, and Kratky plots showed a clear peak at pH 3.0, 4.0 and 6.0, indicating that I(eq) too is compact. In these parameters, I(eq) closely resembles the kinetically-obtained intermediate I(kin) which we found on the folding pathway of wild-type SH3 at pH 3.0 (radius of gyration 18.7 A and theta(222)=-8700 deg.cm(2)dmol(-1)), indicating a 26% alpha-helix proportion in our previous paper. Refolding experiments with A45G were done at pH 6.0 by stopped-flow apparatus monitored by circular dichroism, and compared to kinetic experiments with wild-type SH3 at pH 6.0. The result showed an alpha-helix-rich intermediate at the same dichroism amplitude, but nine times slower in formation-rate. A pH-jump experiment from pH 3.0 to pH 5.9 on A45G was also performed. This showed no bursts, and the rate of conformation-change was almost as fast as the refolding rate of A45G at pH 6.0. These kinetic experiment data would be consistent with I(eq) being nearly identical to the I(kin), which appeared on the folding pathways of both wild-type SH3 and A45G at pH 3.  相似文献   

2.
The folding and unfolding of protein domains is an apparently cooperative process, but transient intermediates have been detected in some cases. Such (un)folding intermediates are challenging to investigate structurally as they are typically not long-lived and their role in the (un)folding reaction has often been questioned. One of the most well studied (un)folding pathways is that of Drosophila melanogaster Engrailed homeodomain (EnHD): this 61-residue protein forms a three helix bundle in the native state and folds via a helical intermediate. Here we used molecular dynamics simulations to derive sample conformations of EnHD in the native, intermediate, and unfolded states and selected the relevant structural clusters by comparing to small/wide angle X-ray scattering data at four different temperatures. The results are corroborated using residual dipolar couplings determined by NMR spectroscopy. Our results agree well with the previously proposed (un)folding pathway. However, they also suggest that the fully unfolded state is present at a low fraction throughout the investigated temperature interval, and that the (un)folding intermediate is highly populated at the thermal midpoint in line with the view that this intermediate can be regarded to be the denatured state under physiological conditions. Further, the combination of ensemble structural techniques with MD allows for determination of structures and populations of multiple interconverting structures in solution.  相似文献   

3.
The SH3 domain has often been used as a model for protein folding due to its typical two-state behaviour. However, recent experimental data at low pH as well as molecular dynamic simulations have indicated that the folding process of SH3 probably is more complicated, and may involve intermediate states. Using both kinetic and equilibrium measurements we have obtained evidence that under native-like conditions the folding of the spectrin SH3 domain does not follow a classic two-state behaviour. The curvature we observed in the Chevron plots is a strong indication of a non-linear activation energy relationship due to the presence of high-energy intermediates. In addition, circular dichroism measurements indicated that refolding after thermal denaturation did not follow the same pattern as thermal unfolding but rather implied less cooperativity and that the refolding transition increased with increasing protein concentration. Further, NMR experiments indicated that upon refolding the SH3 domain gave rise to more than one conformation. Therefore, our results suggest that the folding of the SH3 domain of αII-spectrin does not follow a classical two-state process under high-salt conditions and neutral pH. Heterogeneous folding pathways, which can include folding intermediates as well as misfolded intermediates, might give a more reasonable insight into the folding behaviour of the αII-spectrin SH3 domain.  相似文献   

4.
Recent 15N and 13C spin-relaxation dispersion studies of fast-folding mutants of the Fyn SH3 domain have established that folding proceeds through a low-populated on-pathway intermediate (I) where the central beta-sheet is at least partially formed, but without interactions between the NH2- and COOH-terminal beta-strands that exist in the folded state (F). Initial studies focused on mutants where Gly48 is replaced; in an effort to establish whether this intermediate is a general feature of Fyn SH3 folding a series of 15N relaxation experiments monitoring the folding of Fyn SH3 mutants N53P/V55L and A39V/N53P/V55L are reported here. For these mutants as well, folding proceeds through an on-pathway intermediate with similar features to those observed for G48M and G48V Fyn SH3 domains. However, the 15N chemical shifts extracted for the intermediate indicate pronounced non-native contacts between the NH2 and COOH-terminal regions not observed previously. The kinetic parameters extracted for the folding of A39V/N53P/V55L Fyn SH3 from the three-state folding model F<-->I<-->U are in good agreement with folding and unfolding rates extrapolated to zero denaturant obtained from stopped-flow experiments analyzed in terms of a simplified two-state folding reaction. The folding of the triple mutant was studied over a wide range of temperatures, establishing that there is no difference in heat capacities between F and I states. This confirms a compact folding intermediate structure, which is supported by the 15N chemical shifts of the I state extracted from the dispersion data. The temperature-dependent relaxation data simplifies data analysis because at low temperatures (< 25 degrees C) the unfolded state (U) is negligibly populated relative to I and F. A comparison between parameters extracted at low temperatures where the F<-->I exchange model is appropriate with those from the more complex, three-state model at higher temperatures has been used to validate the protocol for analysis of three-site exchange relaxation data.  相似文献   

5.
Src homology 3 (SH3) domains are small modules that are thought to fold via a two-state mechanism, without the accumulation of significant populations of intermediate states. Relaxation dispersion NMR studies of the folding of G48V and G48M mutants of the Fyn SH3 domain have established that, at least for these modules, folding proceeds through the formation of a transient on-pathway intermediate with an equilibrium population of 1-2% that can be readily detected [Korzhnev, D. M., et al. (2004) Nature 430, 586-590]. To investigate the generality of this result, we present an (15)N relaxation dispersion NMR study of a pair of additional SH3 domains, including a G48V mutant of a stabilized Abp1p SH3 domain that shares 36% sequence identity with the Fyn SH3 module, and a A39V/N53P/V55L mutant Fyn SH3 domain. A transient folding intermediate is detected for both of the proteins studied here, and the dispersion data are well fit to a folding model of the form F <--> I <--> U, where F, I, and U correspond to folded, intermediate, and unfolded states, respectively. The temperature dependencies of the folding/unfolding rate constants were obtained so that the thermodynamic properties of each of F, I, and U could be established. The detection of I states in folding pathways of all SH3 domains examined to date via relaxation dispersion NMR spectroscopy indicates that such intermediates may well be a conserved feature in the folding of such domains in general but that their transient nature along with their low population makes detection difficult using more well-established approaches to the study of folding.  相似文献   

6.
We use a combination of experiments, computer simulations and simple model calculations to characterize, first, the folding transition state ensemble of the src SH3 domain, and second, the features of the protein that determine its folding mechanism. Kinetic analysis of mutations at 52 of the 57 residues in the src SH3 domain revealed that the transition state ensemble is even more polarized than suspected earlier: no single alanine substitution in the N-terminal 15 residues or the C-terminal 9 residues has more than a two-fold effect on the folding rate, while such substitutions at 15 sites in the central three-stranded beta-sheet cause significant decreases in the folding rate. Molecular dynamics (MD) unfolding simulations and ab initio folding simulations on the src SH3 domain exhibit a hierarchy of folding similar to that observed in the experiments. The similarity in folding mechanism of different SH3 domains and the similar hierarchy of structure formation observed in the experiments and the simulations can be largely accounted for by a simple native state topology-based model of protein folding energy landscapes.  相似文献   

7.
The simplified SH3 domain sequence, FP1, obtained in phage display selection experiments has an amino acid composition that is 95% Ile, Lys, Glu, Ala, Gly. Here we use NMR to investigate the tertiary structure of FP1. We find that the overall topology of FP1 resembles that of the src SH3 domain, the hydrogen-deuterium exchange and chemical shift perturbation profiles are similar to those of naturally occurring SH3 domains, and the (15)N relaxation rates are in the range of naturally occurring small proteins. Guided by the structure, we further simplify the FP1 sequence and compare the effects on folding kinetics of point mutations in FP1 and the wild-type src SH3 domain. The results suggest that the folding transition state of FP1 is similar to but somewhat less polarized than that of the wild-type src SH3 domain.  相似文献   

8.
A lattice model with side chains was used to investigate protein folding with computer simulations. In this model, we rigorously demonstrate the existence of a specific folding nucleus. This nucleus contains specific interactions not present in the native state that, when weakened, slow folding but do not change protein stability. Such a decoupling of folding kinetics from thermodynamics has been observed experimentally for real proteins. From our results, we conclude that specific non-native interactions in the transition state would give rise to straight phi-values that are negative or larger than unity. Furthermore, we demonstrate that residue Ile 34 in src SH3, which has been shown to be kinetically, but not thermodynamically, important, is universally conserved in proteins with the SH3 fold. This is a clear example of evolution optimizing the folding rate of a protein independent of its stability and function.  相似文献   

9.
Bovine beta-lactoglobulin is denatured by increased temperature (heat denaturation) and by decreased temperature (cold-denaturation) in the presence of 4 M urea at pH 2.5. We characterized the structure of the cold-denatured state of beta-lactoglobulin using circular dichroism (CD), small-angle X-ray scattering (SAXS) and heteronuclear nuclear magnetic resonance (NMR). CD and SAXS indicated that the cold-denatured state, in comparison with the highly denatured state induced by urea, is rather compact, retaining some secondary structure, but no tertiary structure. The location of the residual structures in the cold-denatured state and their stability were characterized by 1H/2H exchange combined with heteronuclear NMR. The results indicated that the residues adjacent to the disulfide bond (C106-C119) connecting beta-strands G and H had markedly high protection factors, suggesting the presence of a native-like beta-hairpin stabilized by the disulfide bond. Since this beta-hairpin is conserved between different conformational states, including the kinetic refolding intermediate, it should be of paramount importance for the folding and stability of beta-lactoglobulin. On the other hand, the non-native alpha-helix suggested for the folding intermediate was not detected in the cold-denatured state. The 1H/2H exchange experiments showed that the protection factors of a mixture of the native and cold-denatured states is strongly biased by that of the labile cold-denatured state, consistent with a two-process model of the exchange.  相似文献   

10.
To investigate the character and role of misfolded intermediates in protein folding, a recombinant cytochrome c without the normally blocking histidine to heme misligation was studied. Folding remains heterogeneous as in the wild-type protein. Half of the population folds relatively rapidly to the native state in a two-state manner. The other half collapses (fluorescence quenching) and forms a full complement of helix (CD) with the same rate and denaturant dependence as the fast folding fraction but then is blocked and reaches the native structure (695nm absorbance) much more slowly. The factors that transiently block folding are not intrinsic to the folding process but depend on ambient conditions, including protein aggregation (f(concentration)), N terminus to heme misligation (f(pH)), and proline mis-isomerization (f(U state equilibration time)). The misfolded intermediate populated by the slowly folding fraction was characterized by hydrogen exchange pulse labeling. It is very advanced with all of the native-like elements fairly stably formed but not the final Met80-S to heme iron ligation, similar to a previously studied molten globule form induced by low pH. To complete final native state acquisition, some small back unfolding is required (error repair) but the misfolded intermediate does not revisit the U state before proceeding to N. These properties show that the intermediate is a normal on-pathway form that contains, in addition, adventitious misfolding errors that transiently block its forward progress. Related observations for other proteins (partially misfolded intermediates, pathway heterogeneity) might be similarly explained in terms of the optional insertion of error-dependent barriers into a classical folding pathway.  相似文献   

11.
To monitor the fast compaction process during protein folding, we have used a stopped-flow small-angle X-ray scattering technique combined with a two-dimensional charge-coupled device-based X-ray detector that makes it possible to improve the signal-to-noise ratio of data dramatically, and measured the kinetic refolding reaction of alpha-lactalbumin. The results clearly show that the radius of gyration and the overall shape of the kinetic folding intermediate of alpha-lactalbumin are the same as those of the molten globule state observed at equilibrium. Thus, the identity between the kinetic folding intermediate and the equilibrium molten globule state is firmly established. The present results also suggest that the folding intermediate is more hydrated than the native state and that the hydrated water molecules are dehydrated when specific side-chain packing is formed during the change from the molten globule to the native state.  相似文献   

12.
Native state topology has been implicated as a major determinant of protein-folding mechanisms. Here, we test experimentally the robustness of the src SH3-domain folding transition state to changes in topology by covalently constraining regions of the protein with disulfide crosslinks and then performing kinetic analysis on point mutations in the context of these modified proteins. Circularization (crosslinking the N and C termini) of the src SH3 domain makes the protein topologically symmetric and causes delocalization of structure in the transition state ensemble suggesting a change in the folding mechanism. In contrast, crosslinking a single structural element (the distal beta-hairpin) which is an essential part of the transition state, results in a protein that folds 30 times faster, but does not change the distribution of structure in the transition state. As the transition states of distantly related SH3 domains were previously found to be very similar, we conclude that the free energy landscape of this protein family contains deep features which are relatively insensitive to sequence variations but can be altered by changes in topology.  相似文献   

13.
14.
Recent NMR structural characterization studies showed that a seven-residue segment (FKKGERL) from the src SH3 domain adopts the nativelike diverging type II beta-turn in aqueous solution in support of the prediction based on the I-sites library of sequence structural motifs. We study the conformational variability and folding/unfolding thermodynamics of this peptide in explicit solvent using replica-exchange molecular dynamics simulations, which greatly enhances the sampling of the conformational space. This peptide samples three main free energy basins (nativelike, intermediate, and unfolded) separated by small barriers. The nativelike basin is fractionally populated (DeltaG(300K) = 0.4 kcal/mol) with structures that satisfy a subset of the NMR-derived constraints. The intrinsic stability of the diverging turn is examined in relationship to the nature of three specific contacts: a turn-hydrogen bond, a mainchain-to-sidechain hydrogen bond, and an end-to-end hydrophobic contact. We have carried out simulations of mutants at the highly conserved GE positions in the sequence. The mutation E5D destabilizes the isolated diverging turn motif, contrary to the observation that this mutation stabilizes the fyn SH3 domain. The G4T mutation also destabilizes the isolated diverging turn; however, the extent of destabilization is smaller than that of the reverse mutation in the drk SH3.  相似文献   

15.
Unfolded bovine rhodanese, a sulfurtransferase, does not regain full activity upon refolding due to the formation of aggregates and disulfide-linked misfolded states unless a large excess of reductant such as 200 mM -ME and 5 mg/ml detergent are present [Tandon and Horowitz (1990), J. Biol. Chem. 265, 5967]. Even then, refolding is incomplete. We have studied the unfolding and refolding of three rhodanese forms whose crystal structures are known: ES, containing the transferred sulfur as a persulfide; E, without the transferred sulfur, and carboxymethylated rhodanese (CMR), in which the active site was blocked by chemical modification. The X-ray structures of ES, E, and CMR are virtually the same, but their tertiary structures in solution differ somewhat as revealed by near-UV CD. Among these three, CMR is the only form of rhodanese that folds reversibly, requiring 1 mM DTT. A minimum three-state folding model of CMR (NIU) followed by fluorescence at 363 nm, (NI) by fluorescence at 318 nm, and CD (IU) is consistent with the presence of a thermodynamically stable molten globule intermediate in 5–6 M urea. We conclude that the active-site sulfhydryl group in the persulfide form is very reactive; therefore, its modification leads to the successful refolding of urea-denatured rhodanese even in the absence of a large excess of reductant and detergent. The requirement for DTT for complete reversibility of CMR suggests that oxidation among the three non-active-site SH groups can represent a minor trap for refolding through species that can be easily reduced.  相似文献   

16.
Experimental observations suggest that proteins follow different folding pathways under different environmental conditions. We perform molecular dynamics simulations of a model of the c-Crk SH3 domain over a broad range of temperatures, and identify distinct pathways in the folding transition. We determine the kinetic partition temperature-the temperature for which the c-Crk SH3 domain undergoes a rapid folding transition with minimal kinetic barriers-and observe that below this temperature the model protein may undergo a folding transition by multiple folding pathways via only one or two intermediates. Our findings suggest the hypothesis that the SH3 domain, a protein fold for which only two-state folding kinetics was observed in previous experiments, may exhibit intermediate states under conditions that strongly stabilize the native state.  相似文献   

17.
Kinetic and equilibrium studies of the folding and unfolding of the SH3 domain of the PI3 kinase, have been used to identify a folding intermediate that forms after the rate-limiting step on the folding pathway. Folding and unfolding, in urea as well as in guanidine hydrochloride (GdnHCl), were studied by monitoring changes in the intrinsic fluorescence or in the far-UV circular dichroism (CD) of the protein. The two probes yield non-coincident equilibrium transitions for unfolding in urea, indicating that an intermediate, I, exists in equilibrium with native (N) and unfolded (U) protein, during unfolding. Hence, the equilibrium unfolding data were analyzed according to a three-state N ↔ I ↔ U mechanism. An intermediate is observed also in kinetic unfolding studies, and its presence leads to the unfolding reaction in urea as well as in GdnHCl, occurring in two steps. The fast step is complete within the initial 11 ms of unfolding and manifests itself in a burst phase change in fluorescence. At high concentrations of GdnHCl, the entire change in fluorescence during unfolding occurs during the 11 ms burst phase. CD measurements indicate, however, that I retains N-like secondary structure. An analysis of the kinetic and thermodynamic data, according to a minimal three-state N ↔ I ↔ U mechanism, positions I after the rate-limiting transition state, TS1, of folding, on the reaction coordinate of folding in GdnHCl. Hence, I is not revealed when folding is commenced from U, regardless of the nature of the probe used to follow the folding reaction. Interrupted unfolding experiments, in which the protein is unfolded transiently in GdnHCl for various lengths of time before being refolded, showed that I refolds to N much faster than does U, confirms the analysis of the direct folding and unfolding experiments, that I is formed after the rate-limiting step of refolding in GdnHCl.  相似文献   

18.
There is a change from three-state to two-state kinetics of folding across the homeodomain superfamily of proteins as the mechanism slides from framework to nucleation-condensation. The tendency for framework folding in this family correlates with inherent helical propensity. The cellular myeloblastis protein (c-Myb) falls in the mechanistic transition region. An earlier, preliminary report of protein engineering experiments and molecular dynamics simulations (MD) showed that the folding mechanism for this protein has aspects of both the nucleation-condensation and framework models. In the more in-depth analysis of the MD trajectories presented here, we find that folding may be attributed to both of these mechanisms in different regions of the protein. The folding of the loop, middle helix, and turn is best described by nucleation-condensation, whereas folding of the N and C-terminal helices may be described by the framework model. Experimentally, c-Myb folds by apparent two-state kinetics, but the MD simulations predict that the kinetics hide a high-energy intermediate. We stabilized this hypothetical folding intermediate by deleting a residue (P174) in the loop between its second and third helices, and the mutant intermediate is long-lived in the simulations. Equilibrium and kinetic experiments demonstrate that folding of the DeltaP174 mutant is indeed three-state. The presence and shape of the intermediate observed in the simulations were confirmed by small angle X-ray scattering experiments.  相似文献   

19.
During the folding of many proteins, collapsed globular states are formed prior to the native structure. The role of these states for the folding process has been widely discussed. Comparison with properties of synthetic homo and heteropolymers had suggested that the initial collapse represented a shift of the ensemble of unfolded conformations to more compact states without major energy barriers. We investigated the folding/unfolding transition of a collapsed state, which transiently populates early in lysozyme folding. This state forms within the dead-time of stopped-flow mixing and it has been shown to be significantly more compact and globular than the denaturant-induced unfolded state. We used the GdmCl-dependence of the dead-time signal change to characterize the unfolding transition of the burst phase intermediate. Fluorescence and far-UV CD give identical unfolding curves, arguing for a cooperative two-state folding/unfolding transition between unfolded and collapsed lysozyme. These results show that collapse leads to a distinct state in the folding process, which is separated from the ensemble of unfolded molecules by a significant energy barrier. NMR, fluorescence and small angle X-ray scattering data further show that some local interactions in unfolded lysozyme exist at denaturant concentrations above the coil-collapse transition. These interactions might play a crucial role in the kinetic partitioning between fast and slow folding pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号