首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
MOTIVATION: Biological processes in cells are properly performed by gene regulations, signal transductions and interactions between proteins. To understand such molecular networks, we propose a statistical method to estimate gene regulatory networks and protein-protein interaction networks simultaneously from DNA microarray data, protein-protein interaction data and other genome-wide data. RESULTS: We unify Bayesian networks and Markov networks for estimating gene regulatory networks and protein-protein interaction networks according to the reliability of each biological information source. Through the simultaneous construction of gene regulatory networks and protein-protein interaction networks of Saccharomyces cerevisiae cell cycle, we predict the role of several genes whose functions are currently unknown. By using our probabilistic model, we can detect false positives of high-throughput data, such as yeast two-hybrid data. In a genome-wide experiment, we find possible gene regulatory relationships and protein-protein interactions between large protein complexes that underlie complex regulatory mechanisms of biological processes.  相似文献   

4.
A connectionist model of development.   总被引:11,自引:0,他引:11  
We present a phenomenological modeling framework for development. Our purpose is to provide a systematic method for discovering and expressing correlations in experimental data on gene expression and other developmental processes. The modeling framework is based on a connectionist or "neural net" dynamics for biochemical regulators, coupled to "grammatical rules" which describe certain features of the birth, growth, and death of cells, synapses and other biological entities. We outline how spatial geometry can be included, although this part of the model is not complete. As an example of the application of our results to a specific biological system, we show in detail how to derive a rigorously testable model of the network of segmentation genes operating in the blastoderm of Drosophila. To further illustrate our methods, we sketch how they could be applied to two other important developmental processes: cell cycle control and cell-cell induction. We also present a simple biochemical model leading to our assumed connectionist dynamics which shows that the dynamics used is at least compatible with known chemical mechanisms.  相似文献   

5.
6.
7.
The immune response to viral infection is regulated by an intricate network of many genes and their products. The reverse engineering of gene regulatory networks (GRNs) using mathematical models from time course gene expression data collected after influenza infection is key to our understanding of the mechanisms involved in controlling influenza infection within a host. A five-step pipeline: detection of temporally differentially expressed genes, clustering genes into co-expressed modules, identification of network structure, parameter estimate refinement, and functional enrichment analysis, is developed for reconstructing high-dimensional dynamic GRNs from genome-wide time course gene expression data. Applying the pipeline to the time course gene expression data from influenza-infected mouse lungs, we have identified 20 distinct temporal expression patterns in the differentially expressed genes and constructed a module-based dynamic network using a linear ODE model. Both intra-module and inter-module annotations and regulatory relationships of our inferred network show some interesting findings and are highly consistent with existing knowledge about the immune response in mice after influenza infection. The proposed method is a computationally efficient, data-driven pipeline bridging experimental data, mathematical modeling, and statistical analysis. The application to the influenza infection data elucidates the potentials of our pipeline in providing valuable insights into systematic modeling of complicated biological processes.  相似文献   

8.
9.
10.
11.
Liu H  Yi Q  Liao Y  Feng J  Qiu M  Tang L 《Gene》2012,501(2):153-163
A systems understanding of mechanical regulation is critical for determining how cells proliferate and differentiate. To better understand the biological process in which mechanical signals regulate cells, we globally investigated the gene expression profiling via long serial analysis of gene expression (Long SAGE) in osteoblasts after exposure to mechanical stretching. The analysis showed that the differentially expressed genes were related with many physiological processes, including signal transduction, cell proliferation and apoptosis. Several genes that were seldom or never studied in osteoblasts have been found in this study. We further analyzed the signal pathways and provided gene regulatory networks activated by mechanical signals. Many changed genes in our data were contributed to ECM-integrin-FAK mediated pathway and mainly influenced actin-cytoskeleton dynamic remodeling, cell proliferation and differentiation. We also provided evidence supporting the hypothesis that endoplasmic reticulum and mitochondrion were combined to dedicate to calcium regulation. Taken together, our experiments provided a systemic view on biological processes and mechanotransduction network in osteoblasts, suggesting that mechanical signals regulate osteoblast through a greater diversity of interactions and pathways than previously appreciated.  相似文献   

12.
The gap genes play a key role in establishing pair-rule and homeotic stripes of gene expression in the Drosophila embryo. There is mounting evidence that overlapping gradients of gap gene expression are crucial for this process. Here we present evidence that the segmentation gene giant is a bona fide gap gene that is likely to act in concert with hunchback, Krüppel and knirps to initiate stripes of gene expression. We show that Krüppel and giant are expressed in complementary, non-overlapping sets of cells in the early embryo. These complementary patterns depend on mutually repressive interactions between the two genes. Ectopic expression of giant in early embryos results in the selective repression of Krüppel, and advanced-stage embryos show cuticular defects similar to those observed in Krüppel- mutants. This result and others suggest that the strongest regulatory interactions occur among those gap genes expressed in nonadjacent domains. We propose that the precisely balanced overlapping gradients of gap gene expression depend on these strong regulatory interactions, coupled with weak interactions between neighboring genes.  相似文献   

13.
Flower patterning is determined by a complex molecular network but how this network functions remains to be elucidated. Here, we develop an integrative modeling approach that assembles heterogeneous data into a biologically coherent model to allow predictions to be made and inconsistencies among the data to be found. We use this approach to study the network underlying sepal development in the young flower of Arabidopsis thaliana. We constructed a digital atlas of gene expression and used it to build a dynamical molecular regulatory network model of sepal primordium development. This led to the construction of a coherent molecular network model for lateral organ polarity that fully recapitulates expression and interaction data. Our model predicts the existence of three novel pathways involving the HD-ZIP III genes and both cytokinin and ARGONAUTE family members. In addition, our model provides predictions on molecular interactions. In a broader context, this approach allows the extraction of biological knowledge from diverse types of data and can be used to study developmental processes in any multicellular organism.  相似文献   

14.
MOTIVATION: Cluster analysis of gene expression profiles has been widely applied to clustering genes for gene function discovery. Many approaches have been proposed. The rationale is that the genes with the same biological function or involved in the same biological process are more likely to co-express, hence they are more likely to form a cluster with similar gene expression patterns. However, most existing methods, including model-based clustering, ignore known gene functions in clustering. RESULTS: To take advantage of accumulating gene functional annotations, we propose incorporating known gene functions as prior probabilities in model-based clustering. In contrast to a global mixture model applicable to all the genes in the standard model-based clustering, we use a stratified mixture model: one stratum corresponds to the genes of unknown function while each of the other ones corresponding to the genes sharing the same biological function or pathway; the genes from the same stratum are assumed to have the same prior probability of coming from a cluster while those from different strata are allowed to have different prior probabilities of coming from the same cluster. We derive a simple EM algorithm that can be used to fit the stratified model. A simulation study and an application to gene function prediction demonstrate the advantage of our proposal over the standard method. CONTACT: weip@biostat.umn.edu  相似文献   

15.
Understanding the genetic basis of ecologically important traits is a major focus of evolutionary research. Recent advances in molecular genetic techniques should significantly increase our understanding of how regulatory genes function. By contrast, our understanding of the broader macro-evolutionary implications of developmental gene function lags behind. Here we review published data on the floral symmetry gene network (FSGN), and conduct phylogenetic analyses that provide evidence of a link between floral symmetry and breeding systems in angiosperms via dichogamy. Our results suggest that known genes in the FSGN and those yet to be described underlie this association. We posit that the integration of floral symmetry and the roles of other regulatory genes in plant breeding system evolution will provide new insights about macro-evolutionary patterns and processes in flowering plants.  相似文献   

16.
17.
18.
Although microarray data have been successfully used for gene clustering and classification, the use of time series microarray data for constructing gene regulatory networks remains a particularly difficult task. The challenge lies in reliably inferring regulatory relationships from datasets that normally possess a large number of genes and a limited number of time points. In addition to the numerical challenge, the enormous complexity and dynamic properties of gene expression regulation also impede the progress of inferring gene regulatory relationships. Based on the accepted model of the relationship between regulator and target genes, we developed a new approach for inferring gene regulatory relationships by combining target-target pattern recognition and examination of regulator-specific binding sites in the promoter regions of putative target genes. Pattern recognition was accomplished in two steps: A first algorithm was used to search for the genes that share expression profile similarities with known target genes (KTGs) of each investigated regulator. The selected genes were further filtered by examining for the presence of regulator-specific binding sites in their promoter regions. As we implemented our approach to 18 yeast regulator genes and their known target genes, we discovered 267 new regulatory relationships, among which 15% are rediscovered, experimentally validated ones. Of the discovered target genes, 36.1% have the same or similar functions to a KTG of the regulator. An even larger number of inferred genes fall in the biological context and regulatory scope of their regulators. Since the regulatory relationships are inferred from pattern recognition between target-target genes, the method we present is especially suitable for inferring gene regulatory relationships in which there is a time delay between the expression of regulating and target genes.  相似文献   

19.
20.
Plant organs, including leaves and roots, develop by means of a multilevel cross talk between gene regulation, patterned cell division and cell expansion, and tissue mechanics. The multilevel regulatory mechanisms complicate classic molecular genetics or functional genomics approaches to biological development, because these methodologies implicitly assume a direct relation between genes and traits at the level of the whole plant or organ. Instead, understanding gene function requires insight into the roles of gene products in regulatory networks, the conditions of gene expression, etc. This interplay is impossible to understand intuitively. Mathematical and computer modeling allows researchers to design new hypotheses and produce experimentally testable insights. However, the required mathematics and programming experience makes modeling poorly accessible to experimental biologists. Problem-solving environments provide biologically intuitive in silico objects ("cells", "regulation networks") required for setting up a simulation and present those to the user in terms of familiar, biological terminology. Here, we introduce the cell-based computer modeling framework VirtualLeaf for plant tissue morphogenesis. The current version defines a set of biologically intuitive C++ objects, including cells, cell walls, and diffusing and reacting chemicals, that provide useful abstractions for building biological simulations of developmental processes. We present a step-by-step introduction to building models with VirtualLeaf, providing basic example models of leaf venation and meristem development. VirtualLeaf-based models provide a means for plant researchers to analyze the function of developmental genes in the context of the biophysics of growth and patterning. VirtualLeaf is an ongoing open-source software project (http://virtualleaf.googlecode.com) that runs on Windows, Mac, and Linux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号