首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
The role of endogenous ethylene during germination of non-dormant seeds of Amaranthus caudatus L. was investigated. The seeds readily germinated in water and darkness at 24°C. Application of ethylene or of its precursor I-aminocyclopropane-I-carboxylic acid (ACC) slightly increased the rate of germination. Both compounds effectively antagonized osmotic inhibition by polyethyleneglycol. Application of aminoethoxyvinylglycine (AVG) reduced ethylene production by 90% but did not inhibit germination. However, germination was inhibited by 2,5-norbornadiene, a competitive inhibitor of ethylene action. This inhibition was counteracted by ethylene, ethephon or ACC and enforced by AVG. It is concluded that the action of endogenous ethylene is an indispensable factor during germination of non-dormant seeds of A. caudatus. Ethylene action is required from the start of imbibition on. In water, low levels of endogenous ethylene are sufficient for this action. PEG increased the ethylene requirement considerably.  相似文献   

2.
Primary dormancy in A. retroflexus seeds wascompletely broken by dry storage or ethylene treatment and partially removedwith GA3. Norbornadiene counteracted the dormancy breaking action ofethylene and GA3. The GA3 effect was lowered bycobaltous ions. ABA increased the ethylene requirement in primary dormant seeds.Dormant seeds had a similar or different ability to produce ethylene and ACCoxidase in vivo activity than did non-dormant seeds,depending on the period of incubation. Dormant seeds contained less endogenousACC than non-dormant seeds. Thus, ethylene seems to play an essential role inthe release of primary dormancy in A. retroflexus seeds.Ethylene also participates in the release of dormancy achieved by GA3treatment. The results indicate that both ethylene biosynthesis and action isinvolved in the control of primary dormancy in Amaranthusretroflexus seeds.  相似文献   

3.
4.
Conversion of exogenous 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene was studied in sunflower (Helianthus annuus L., cv. Mirasol) seeds in relation to germinability. Ethylene production from ACC decreased during seed maturation, and non-dormant mature seeds were practically unable to synthesize ethylene until germination and growth occurred, indicating that ethylene forming enzyme (EFE) activity developed during tissue imbibition and growth. ACC conversion to ethylene was reduced by the presence of pericarp, and in young seedlings it was less in cotyledons than in growing axes.ACC conversion to ethylene by cotyledons from young seedlings was optimal at c. 30°C, and was strongly inhibited at 45°C. Pretreatment of imbibed seeds at high temperature (45°C) induced a thermodormancy and a progressive decrease in EFE activity.Abscisic acid and methyl-jasmonate, two growth regulators which inhibit seed germination and seedling growth, and cycloheximide were also shown to inhibit ACC conversion to ethylene by cotyledons of 3-day-old seedlings and by inbibed seeds.Abbreviations ABA abscisic acid - ACC 1-aminocyclopropane-1-carboxylic acid - CH cycloheximide - EFE ethylene forming enzyme - IAA indole-3-acetic acid - Me-Ja methyl-jasmonate  相似文献   

5.
 Increased ethylene evolution accompanies seed germination of many species including Pisum sativum L., but only a little is known about the regulation of the ethylene biosynthetic pathway in different seed tissues. Biosynthesis of the direct ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), the expression of ACC oxidase (ACO), and ethylene production were investigated in the cotyledons and embryonic axis of germinating pea seeds. An early onset and sequential induction of ACC biosynthesis, accumulation of Ps-ACO1 mRNA and of ACO activity, and ethylene production were localized almost exclusively in the embryonic axis. Maximal levels of ACC, Ps-ACO1 mRNA, ACO enzyme activity and ethylene evolution were found when radicle emergence was just complete. Treatment of germinating seeds with ethylene alone or in combination with the inhibitor of ethylene action 2,5-norbornadiene showed that endogenous ethylene regulates its own biosynthesis through a positive feedback loop that enhances ACO expression. Accumulation of Ps-ACO1 mRNA and of ACO enzyme activity in the embryonic axis during the late phase of germination required ethylene, whereas Ps-ACS1 mRNA levels and overall ACC contents were not induced by ethylene treatment. Ethylene did not induce ACO in the embryonic axis during the early phase of germination. Ethylene-independent signalling pathways regulate the spatial and temporal pattern of ethylene biosynthesis, whereas the ethylene signalling pathway regulates high-level ACO expression in the embryonic axis, and thereby enhances ethylene evolution during seed germination. Received: 28 September 1999 / Accepted: 27 December 1999  相似文献   

6.
Grappin P  Bouinot D  Sotta B  Miginiac E  Jullien M 《Planta》2000,210(2):279-285
The physiological characteristics of seed dormancy in Nicotiana plumbaginifolia Viv. are described. The level of seed dormancy is defined by the delay in seed germination (i.e the time required prior to germination) under favourable environmental conditions. A wild-type line shows a clear primary dormancy, which is suppressed by afterripening, whereas an abscisic acid (ABA)-deficient mutant shows a non-dormant phenotype. We have investigated the role of ABA and gibberellic acid (GA3) in the control of dormancy maintenance or breakage during imbibition in suitable conditions. It was found that fluridone, a carotenoid biosynthesis inhibitor, is almost as efficient as GA3 in breaking dormancy. Dry dormant seeds contained more ABA than dry afterripened seeds and, during early imbibition, there was an accumulation of ABA in dormant seeds, but not in afterripened seeds. In addition, fluridone and exogenous GA3 inhibited the accumulation of ABA in imbibed dormant seeds. This reveals an important role for ABA synthesis in dormancy maintenance in imbibed seeds. Received: 31 December 1998 / Accepted: 9 July 1999  相似文献   

7.
Ethephon (Eth), gibberellin A3, A4 + 7 (GA3, GA4 + 7), and 6-benzyladenine (BA) removed secondary dormancy of Amaranthus caudatus seeds. The GAs and BA potentiated the effect of ethephon or 1-aminocyclopropane-1-carboxylic acid (ACC), an ethylene biosynthesis precursor, in terms of the rate or final percent of germination. Aminoethoxyvinylglycine (AVG), an ACC synthase activity inhibitor, was observed to simultaneously inhibit the release from dormancy effected by GA3 or BA as well as the ethylene production stimulated by these regulators. Breaking of secondary dormancy by GA3, GA4 + 7 or BA was prevented by 2,5-norbornadiene (NBD), an inhibitor of ethylene binding. Ethylene completely or markedly reversed the inhibitory effect of NBD. We thus conclude that the removal of secondary dormancy in Amaranthus caudatus seeds by gibberellin or benzyladenine involves ethylene biosynthesis and action.  相似文献   

8.
BACKGROUND AND AIMS: The relationship between ethylene production and both seed dormancy and germination was investigated using red rice (weedy rice) as a model species. METHODS: Both fully dormant and after-ripened (non-dormant) naked caryopses were incubated with or without inhibitors of ethylene synthesis [aminoethoxyvinylglycine (AVG)] and perception [silver thiosulfate (STS)], or in the presence of the natural ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC). The kinetics of ethylene emissions were measured with a sensitive laser-photoacoustic system. KEY RESULTS: Dormant red rice caryopses did not produce ethylene. In non-dormant caryopses, ethylene evolution never preceded the first visible stage of germination (pericarp splitting), and ethylene inhibitors completely blocked ethylene production, but not pericarp splitting. Accordingly, endogenous ACC appeared to be lacking before pericarp splitting. However, early seedling growth (radicle or coleoptile attaining the length of 1 mm) followed ethylene evolution and was delayed by the inhibitors. Wounding the dormant caryopses induced them to germinate and produce ethylene, but their germination was slow and pericarp splitting could be speeded up by ethylene. CONCLUSIONS: The findings suggest that, in red rice, endogenous ethylene stimulates the growth of the nascent seedling, but does not affect seed dormancy or germination inception. Correspondingly, this phytohormone does not play a role in the dormancy breakage induced by wounding, but accelerates germination after such breakage has occurred.  相似文献   

9.

The relationship between ethylene and cyanide (HCN) and karrikin 1 (KAR1) in dormancy release was studied in secondary dormant Brassica oleracea L. (Chinese cabbage) seeds. Freshly harvested seeds of Brassica oleracea usually have poor germination potential. Karrikin1 (KAR1) and cyanide (HCN) are able to stimulate seed germination. However, the stimulatory effects of these two chemicals depend on the activation of the ethylene biosynthesis pathway and on ethylene perception. In this study, KAR1 and HCN application increased the activity of ethylene and of two ethylene biosynthesis enzymes, ACC synthase (ACS) and ACC oxidase (ACO). KAR1 and HCN collectively promoted the accumulation of 1 aminocyclopropane-1-carboxylic acid (ACC). In the presence of NO (nitric oxide) and KAR1, ACS and ACO activities reached their maximum levels after 36 and 42 h, respectively. Ethylene inhibitors suppressed seed germination by approximately 55%, whereas the respiratory inhibitors SHAM and NaN3 inhibited seed germination by 5–10% in the presence of HCN and KAR1. KAR1 and HCN collectively reduced the abscisic acid (ABA) content in seeds, increased the gibberellic acid (GA) content and released seed dormancy. The expression of ethylene biosynthesis genes and ethylene receptor genes (BOACO1, BOACS1, BOACS3, BOACS4, BOACS5, BOACS7, BOACS9, BOACS11, BOETR1 and BOETR2) provided further evidence of the involvement of ethylene in KAR1 and HCN-induced germination. BOACO1, BOACS1, BOACS5, BOACS7, BOACS9, BOACS11, BOETR1 and BOETR2 genes were up regulated in the presence of KAR1 and HCN, while the remaining genes were down regulated. The expression of various ethylene biosynthesis and ethylene receptor genes suggested functional diversification and variations in seed sensitivity in the presence of KAR1 and HCN. Therefore, in the current study, KAR1 and HCN application effectively induced the germination of B. oleracea seeds (approximately 97% germination rate) after 6 days by modifying the ethylene biosynthetic pathway.

  相似文献   

10.
11.
Methyl jasmonate (JA-Me) at 10–3 M completely inhibited Amaranthus caudatus seed germination. Exogenous ethylene could totally reverse this inhibition. The inhibitor of ethylene action, 2,5-norbornadiene (NBD), increased the sensitivity of seeds to JA-Me. Methyl jasmonate inhibited ethylene production and also decreased both 1-aminocyclopropane-1-carboxylic acid (ACC) and malonyl ACC (MACC) content. Likewise, ACC oxidase activity in vivo was decreased by jasmonate. Similarly ACC oxidase activity in vitro isolated from seeds incubated in the presence of JA-Me was lower than that isolated from untreated seeds.The inhibitory JA-Me action on seed germination seems to be mainly associated with the inhibition of ethylene biosynthesis. Both inhibition of ACC synthase and ACC oxidase activity and/or synthesis can be involved.  相似文献   

12.
Seed of Stlosanthes humilis both have hard integuments and display physiological dormancy, the latter being lost during post-harvest ageing. Ethrel and l-aminocyclopropane-1-carboxylic acid (ACC) partially released scarified young seed from physiological dormancy. Cobalt and silver ions and abscisic acid inhibited germination of scarified non-dormant seed. Abscisic acid also inhibited germination of voung seed promoted by ACC. Thiourea and ethrel plus benzyladenine showed the greatest efficacy in breaking seed dormancy.  相似文献   

13.
Seed dormancy plays a key role in preventing seeds of higher plants from random germination under adverse environmental conditions. Previous studies suggested that a critical temperature could regulate germination of weedy rice seeds without primary dormancy at seed dispersion. However, what will happen to the non-dormant seeds after shattering in the soil seed banks when temperature fluctuates to exceed the critical temperature remains an interesting question to be investigated. To determine whether or not soil burial can change the status of dormancy in weedy rice seeds, we examined germination ratios of weedy rice seeds after soil-burial treatments. In addition, we compared hormone levels in the untreated seeds and viable but ungerminated seeds after soil burial. Results showed that soil burial induced a proportion of 41%–72% dormant seeds in the initially non-dormant weedy rice seeds. Also, the induction of seed dormancy is associated with the change of hormone levels in the seeds treated by soil burial, suggesting that soil burial can significantly activate the control of hormone production in seeds. Together, the previously reported mechanism of critical temperature-inhibited seed germination and the newly found phenomenon of soil burial-induced seed dormancy provide a “double-security” strategy to ensure germination of weedy rice seeds under a favorable condition in agricultural ecosystems. The findings not only reveal the important role of rapid evolution of adaptive functions in weeds, such as weedy rice, in adapting to changing agricultural environments, but also facilitate the design of strategies for effective weedy rice control practices.  相似文献   

14.
15.
Stylosanthes, a genus of tropical forage legume, is known to exhibit good persistence in saline soils, yet mechanisms for regulation of seed germination under salt stress are poorly understood. This study was carried out to evaluate the mode of action of salt stress on seed germination of Stylosanthes. 1-Aminocyclopropane-1-carboxylic acid (ACC) increased ethylene biosynthesis and germination of NaCl-inhibited seeds in a dose-dependent manner. Contents of ACC and germination of Stylosanthes humilis seeds increased following transfer from NaCl solution to deionised water, but not after transfer to l-α-(2-aminoethoxyvinyl)-glycine (AVG) solution, an inhibitor of ethylene biosynthesis. Ethylene biosynthesis was much larger in NaCl-treated seeds of Stylosanthes guianensis than in seeds of S. humilis and Stylosanthes capitata, a fact which was reflected in higher germination rates. S. guianensis seedlings also displayed higher growth and survival rates than S. humilis and S. capitata under salt stress. Moreover, smaller ACC levels, as well as reduced ethylene biosynthesis of S. capitata seeds were accompanied by lower germination under salt stress. In addition, S. capitata seedlings treated with NaCl solutions exhibited relatively lower growth and survival rates in comparison with S. humilis and S. guianensis. Thus, different abilities to synthesize ethylene by S. guianensis, S. humilis and S. capitata seeds explain the differences in tolerance to salt stress of the three species.  相似文献   

16.
Ethylene is invariably produced during seed germination but its role in regulating seed dormancy and germination is poorly understood. Seeds of 22 halophytic species having different life forms – salt secreting dicots, salt secreting monocots, stem succulents and leaf succulents were germinated in Petri dishes kept in a growth chamber set at 20/30 °C (night/day) temperature and a 12 hr light period. Sodium chloride and ethephon were added to the medium from the beginning of the experiment. Seed germination was recorded every other day for twenty days. Application of ethylene did not have any significant effect on releasing seeds from innate dormancy. However, it appeared to have a role in alleviation of salinity effects which varied from negative in certain species to almost complete alleviation of high salinity effects in others.Our data indicates that ethylene appears to have little role in breaking innate seed dormancy however, in most halophyte seeds studied, application of ethylene alleviate the salinity effect to various degrees. Halophyte seeds which could germinate under saline conditions approaching twice the salinity of seawater may offer clues to understand management of seed germination under highly saline conditions. To cite this article: M.A. Khan et al., C. R. Biologies 332 (2009).  相似文献   

17.
Fluctuating temperature plays a critical role in determining the timing of seed germination in many plant species. However, the physiological and biochemical mechanisms underlying such a response have been paid little attention. The present study investigated the effect of plant growth regulators and cold stratification in regulating Leymus chinensis seed germination and dormancy response to temperature. Results showed that seed germination was less than 2 % at all constant temperatures while fluctuating temperature significantly increased germination percentage. The highest germination was 71 % at 20/30 °C. Removal of the embryo enclosing material of L. chinensis seed germinated to 74 %, and replaced the requirement for fluctuating temperature to germinate, by increasing embryo growth potential. Applications of GA4+7 significantly increased seed germination at constant temperature. Also, inhibition of GA biosynthesis significantly decreased seed germination at fluctuating temperatures depending upon paclobutrazol concentration. This implied GA was necessary for non-dormant seed germination and played an important role in regulating seed germination response to temperature. Inhibition of ABA biosynthesis during imbibition completely released seed dormancy at 20/30 °C, but showed no effect on seed germination at constant temperature, suggesting ABA biosynthesis was important for seed dormancy maintenance but may not involve in seed germination response to temperature. Cold stratification with water or GA3 induced seed into secondary dormancy, but this effect was reversed by exogenous FL, suggesting ABA biosynthesis during cold stratification was involved in secondary dormancy. Also, cold stratification with FL entirely replaced the requirement of fluctuating temperature for germination with seeds having 73 % germination at constant temperature. This appears to be attributed to inhibition of ABA biosynthesis and an increase of GA biosynthesis during cold stratification, leading to an increased embryo growth potential. We suggest that fluctuating temperature promotes seed germination by increasing embryo growth potential, mainly attributed to GA biosynthesis during imbibitions. ABA is important for seed dormancy maintenance and induction but showed less effect on non-dormant seed germination response to temperature.  相似文献   

18.
Dormancy of scarified seeds of Stylosanthes humilis was broken by acidic Al3+ and Fe3+ solutions. Fe+3-stimulated seeds exhibited a high activity of 1-aminocyclopropane-1-carboxylate (ACC) oxidase and produced great amounts of ethylene, which showed correlated with the germination process. In addition, specific inhibitors of ethylene biosynthesis and action largely depressed the Fe3+-stimulated germination, leading to the conclusion that the ion broke dormancy by triggering ethylene production by the seeds. By contrast, inhibitors of ethylene biosynthesis and action did not impair germination of Al3+-stimulated dormant seeds. Moreover, ethylene production and activity of ACC oxidase of Al3+-treated seeds was substantially decreased by inhibitors of ethylene biosynthesis, but germination kept large. Together these data suggest that ethylene biosynthesis was not required in the chain of events triggered by Al3+ leading to dormancy breakage. Methyl viologen (MV), a reactive oxygen species-generating compound, broke dormancy of seeds to the same extent as Al3+ did. Germination of both Al3+- and MV-stimulated dormant seeds was inhibited by sodium selenate, an antioxidant compound; selenate, however had no effect on germination of Fe3+-stimulated seeds. Together these data indicate that the mechanisms underlying the germination of Al3+- and Fe3+-treated seeds are not the same.  相似文献   

19.
水浮莲种子是一种奇特的需光种子。在黑暗中,GA_2或BA均不能代替光照诱导萌发,可是0.1μl/l乙烯却能引起部分种子萌发,在1000μ1/1乙烯的作用下,发芽率可达80%,接近全光照处理的萌发水平(91%发芽率)。ACC也能诱导水浮莲种子的萌发,0.1 mM浓度可获30%发芽率。在较短光照下,ACC对种子萌发有增效作用。在光照前应用ACC,其诱导效应大于两者同时施用。在照光萌发中,种子的内源ACC含量及乙烯释放量均显著增加。CoCl_2和AOA均能抑制光的诱导萌发。推论光打破休眠诱导萌发的作用是与乙烯的生成密切相关。  相似文献   

20.
To further elucidate the regulation of dormancy release, we followed the natural afterripening of Virginia-type peanut (Arachis hypogaea L.) seeds from about the 5th to 40th week after harvest. Seeds were kept at low temperature (3 ± 2 C) until just prior to testing for germination, ethylene production, and internal ethylene concentration. Germination tended to fluctuate but did not increase significantly during the first 30 weeks; internal ethylene concentrations and ethylene production remained comparatively low during this time. When the seeds were placed at room temperature during the 30th to 40th weeks after harvest, there was a large increase in germination, 49% and 47% for apical and basal seeds, respectively. The data confirm our previous suggestion that production rates of 2.0 to 3.0 nanoliters per gram fresh weight per hour are necessary to provide internal ethylene concentrations at activation levels which cause a substantial increase of germination. Activation levels internally must be more than 0.4 microliter per liter and 0.9 microliter per liter for some apical and basal seeds, respectively, since dormant-imbibed seeds containing these concentrations did not germinate. Abscisic acid inhibited germination and ethylene production of afterripened seeds. Kinetin reversed the effects of ABA and this was correlated with its ability to stimulate ethylene production by the seeds. Ethylene also reversed the effects of abscisic acid. Carbon dioxide did not compete with ethylene action in this system. The data indicate that ethylene and an inhibitor, possibly abscisic acid, interact to control dormant peanut seed germination. The inability of CO2 to inhibit competitively the action of ethylene on dormancy release, as it does other ethylene effects, suggests that the primary site of action of ethylene in peanut seeds is different from the site for other plant responses to ethylene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号