首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
In silico approaches in conjunction with morphology, nitrogenase activity, and qRT-PCR explore the impact of selected abiotic stressor such as arsenic, salt, cadmium, copper, and butachlor on nitrogen fixing (nif family) genes of diazotrophic cyanobacterium Anabaena sp. PCC7120. A total of 19 nif genes are present within the Anabaena genome that is involved in the process of nitrogen fixation. Docking studies revealed the interaction between these nif gene-encoded proteins and the selected abiotic stressors which were further validated through decreased heterocyst frequency, fragmentation of filaments, and downregulation of nitrogenase activity under these stresses indicating towards their toxic impact on nitrogen fixation potential of filamentous cyanobacterium Anabaena sp. PCC7120. Another appealing finding of this study is even though having similar binding energy and similar interacting residues between arsenic/salt and copper/cadmium to nif-encoded proteins, arsenic and cadmium are more toxic than salt and copper for nitrogenase activity of Anabaena which is crucial for growth and yield of rice paddy and soil reclamation.  相似文献   

5.
6.
The sizes of endonuclease digestion fragments of DNA from cyanobacteria in symbiotic association with Azolla caroliniana or Anthoceros punctatus, or in free-living culture, were compared by Southern hybridization using cloned nitrogenase (nif) genes from Anabaena sp. PCC 7120 as probes. The restriction fragment pattern produced by cyanobacteria isolated from A. caroliniana by culture through symbiotic association with Anthoceros differed from that of the major symbiotic cyanobacterium freshly separated from A. caroliniana. The results indicate that minor cyanobacterial symbionts occur in association with Azolla and that the dominant symbiont was not cultured in the free-living state. Both the absence of hybridization to an xisA gene probe and the mapping of restriction fragments indicated a contiguous nifHDK organization in all cells of the symbiont in association with Azolla. On the other hand, in the cultured isolate from Azolla and in Nostoc sp. 7801, the nifD and nifK genes are nominally separated by an interval of unknown length, compatible with the interruption of the nifHDK operon by a DNA element as observed in Anabaena sp. PCC 7120. In the above cultured strains, restriction fragments consistent with a contiguous nifHDK operon were also present at varying hybridization intensities, especially in Nostoc sp. 7801 grown in association with Anthoceros, presumably due to gene rearrangement in a fraction of the cells.Non-standard abbreviations bp base pairs - kb kilobase pairs - kd kilodaltons  相似文献   

7.
The organization of the three structural nitrogen fixation (nif) genes that encode nitrogenase (nif K and nif D) and nitrogenase reductase (nif H) have been examined in a number of cyanobacteria. Hybridization of Anabaena 7120 nif gene probes to restriction endonuclease-digested genomic DNA has shown (a) that cyanobacteria incapable of N2 fixation have no regions of DNA with significant homology to the three nif probes, (b) that Pseudanabaena sp., a nonheterocystous cyanobacterium, has a contiguous nif KDH gene cluster, and (c) that in contrast with other heterocystous cyanobacteria, Fischerella sp. has a contiguous nif KDH gene cluster.  相似文献   

8.
9.
Summary A DNA region showing homology to Klebsiella pneumoniae nifA and nifB is duplicated in Rhodobacter capsulatus. The two copies of this region are called nifA/nifB copy I and nifA/nifB copy II. Deletion mutagenesis demonstrated that either of the two copies is sufficient for growth in nitrogen-free medium. In contrast, a double deletion mutant turned out to be deficient in nitrogen fixation. The complete nucleotide sequence of a 4838 bp fragment containing nifA/nifB copy I was determined. Two open reading frames coding for a 59653 (NifA) and a 49453 (NifB) dalton protein could be detected. Comparison of the amino acid sequences revealed that the R. capsulatus nifA and nifB gene products are more closely related to the NifA and NifB proteins of Rhizobium meliloti and Rhizobium leguminosarum than to those of K. pneumoniae. A rho-independent termination signal and a typical nif promoter region containing a putative NifA binding site and a consensus nif promoter are located within the region between the R. capsulatus nifA and nifB genes. The nifB sequence is followed by an open reading frame (ORF1) coding for a 27721 dalton protein in nifA/nifB copy I. DNA sequence analysis of nifA/nifB copy II showed that both copies differ in the DNA region downstream of nifB and in the noncoding sequence in front of nifA. All other regions compared, i.e. the 5 part of nifA, the intergenic region and the 3 part of nifB, are identical in both copies.  相似文献   

10.
11.
Summary Labeled probes carrying the Anabaena PCC 7120 nitrogenase (nifK and nifD) and nitrogenase reductase (nifH) genes were hybridized to Southern blots of DNA from diverse N2-fixing cyanobacteria in order to test a previous observation of different nif gene organization in nonheterocystous and heterocystous strains. The nif probes showed no significant hybridization to DNA from a unicellular cyanobacterium incapable of N2 fixation. All nonheterocystous cyanobacteria examined (unicellular and filamentous) had a contiguous nifKDH gene cluster whereas all of the heterocystous strains showed separation of nifK from contiguous nifDH genes. These findings suggest that nonheterocystous and heterocystous cyanobacteria have characteristic and fundamentally different nif gene arrangements. The noncontiguous nif gene pattern, as shown with two Het- mutants, is independent of phenotypic expression of heterocyst differentiation and aerobic N2-fixation. Thus nif arrangement could be a useful taxonomic marker to distinguish between phenotypically Het- heterocystous cyanobacteria and phylogenetically unrelated nonheterocystous strains.  相似文献   

12.
13.
Summary A cluster analysis based on codon usage in genes for biological nitrogen fixation (nif genes) grouped diazotrophs into three distinct classes: anaerobes, cyanobacteria, and aerobes. In thenif genes ofKlebsiella pneumoniae there was no evidence for selection pressure in favor of highly translatable codons. However, in the nitrogen regulatory operonglnAntrBntrC of enteric bacteria the stoichiometrically high level of glutamine synthetase may be facilitated by the presence of efficiently translatable codons inglnA. Thenif genes of the cyanobacteriumAnabaena showed codon selection in favor of translational efficiency. Computation of codon adaptation indices for expression in heterologous systems indicated that the reading frames most suitable for expression ofnif genes inEscherichia coli, Bacillus subtilis, andSaccharomyces cerevisiae were present in azotobacters, clostridia, and cyanobacteria, respectively. In codon-usage-based cluster analysis, type 3 nitrogenase genes ofAzotobacter vinelandii grouped along with type 1 and type 2 genes. This is in contrast to the nucleotide sequence-based multiple alignment in which type 3 nitrogenase genes ofA. vinelandii have been reported to cluster with entirely unrelated diazotrophs such as methanogens and clostridia. This may be indicative of lateral transfer ofnif genes among widely divergent taxons. The chromosomal- and plasmid-locatednif genes of rhizobia also cluster separately in nucleotide sequence-based analysis but showed similar codon usage. These analyses suggested that the phylogeny ofnif genes drawn on the basis of nucleotide sequence homology was not masked by the taxon-specific pressure on codon usage.  相似文献   

14.
The evolutionary history of nitrogen fixation has been vigorously debated for almost two decades. Previous phylogenetic analyses of nitrogen fixation genes (nif) have shown support for either evolution by vertical descent or lateral transfer, depending on the specific nif gene examined and the method of analyses used. The debate centers on the placement and monophyly of the cyanobacteria, proteobacteria, and Gram-positive bacteria (actinobacteria and firmicutes). Some analyses place the cyanobacteria and actinobacteria within the proteobacteria, which suggests that the nif genes have been laterally transferred since this topology is incongruent with ribosomal phylogenies, the standard marker for comparison. Other nif analyses resolve and support the monophyly of the cyanobacteria, proteobacteria, and actinobacteria, supporting vertical descent. We have revisited these conflicting scenarios by analyzing nifD from an increased number of cyanobacteria, proteobacteria, and Gram-positive bacteria. Parsimony analyses of amino acid sequences and maximum likelihood analysis of nucleic acid sequences support the monophyly of the cyanobacteria and actinobacteria but not the proteobacteria, lending support for vertical descent. However, distance analysis of nucleic acid sequences placed the actinobacteria within the proteobacteria, supporting lateral transfer. We discuss evidence for both vertical descent and lateral transfer of nitrogen fixation.  相似文献   

15.
16.
17.
In the vegetative cells of heterocystous cyanobacteria, such asAnabaena, two Operons harbouring the nitrogen fixaton (nif) genes contain two separate intervening DNA elements resulting in the dispersion of genes and impaired gene expression. A 11 kb element disrupts thenifD gene in thenifH, D-K operon. It contains a 11 bp sequence (GGATTACTCCG) directly repeated at its ends and harbours a gene,xisA, which encodes a site-specific recombinase. A large 55 kb element interrupts thefdxN gene in thenifB fdxN-nifS-nifU operon. It contains two 5 bp direct repeats (TATTC) at its ends and accommodates at least one gene,xisF, which encodes another site-specific recombinase. During heterocyst differentiation both the discontinuities are precisely excised by two distinct site-specific recombination events. One of them is brought about by the XisA protein between the 11 bp direct repeats. The second one is caused by the XisF protein and occurs between the 5 bp direct repeats. As a consequence the 11kb and 55 kb elements are removed from the chromosome as circles and functionalnif Operons are created. Nitrogenase proteins are then expressed from the rearranged genes in heterocysts and aerobic nitrogen fixation ensues. How these elements intruded thenif genes and how and why are they maintained in heterocystous cyanobacteria are exciting puzzles engaging considerable research effort currently. The unique developmental regulation of these gene rearrangements in heterocystous cyanobacteria is discussed.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号