首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biological assembly of iron–sulfur (Fe–S) clusters is mediated by complex systems consisting of multiple proteins. Escherichia coli possesses two distinct systems called the ISC and SUF machineries encoded by iscSUA‐hscBA‐fdx‐iscX and sufABCDSE respectively. Deletion of both pathways results in absence of the biosynthetic apparatus for Fe–S clusters, and consequent lethality, which has hampered detailed genetic studies. Here we report that modification of the isoprenoid biosynthetic pathway can offset the indispensability of the Fe–S cluster biosynthetic systems and show that the resulting Δisc Δsuf double mutants can grow without detectable Fe–S cluster‐containing proteins. We also constructed a series of mutants in which each isc gene was disrupted in the deletion background of sufABCDSE. Phenotypic analysis of the mutants revealed that Fdx, an essential electron‐transfer Fe–S protein in the ISC machinery, is dispensable under anaerobic conditions, which is similar to the situation with IscA. Furthermore, we found that several suppressor mutations in IscU, an Fe–S scaffold protein responsible for the de novo Fe–S cluster assembly, could bypass the essential role of the chaperone system HscA and HscB. These findings pave the way toward a detailed molecular analysis to understand the mechanisms involved in Fe–S cluster biosynthesis.  相似文献   

2.
The biosynthesis of iron–sulfur (Fe–S) clusters in Bacillus subtilis is mediated by the SUF‐like system composed of the sufCDSUB gene products. This system is unique in that it is a chimeric machinery comprising homologues of E. coli SUF components (SufS, SufB, SufC and SufD) and an ISC component (IscU). B. subtilis SufS cysteine desulfurase transfers persulfide sulfur to SufU (the IscU homologue); however, it has remained controversial whether SufU serves as a scaffold for Fe–S cluster assembly, like IscU, or acts as a sulfur shuttle protein, like E. coli SufE. Here we report that reengineering of the isoprenoid biosynthetic pathway in B. subtilis can offset the indispensability of the sufCDSUB operon, allowing the resultant Δsuf mutants to grow without detectable Fe–S proteins. Heterologous bidirectional complementation studies using B. subtilis and E. coli mutants showed that B. subtilis SufSU is interchangeable with E. coli SufSE but not with IscSU. In addition, functional similarity in SufB, SufC and SufD was observed between B. subtilis and E. coli. Our findings thus indicate that B. subtilis SufU is the protein that transfers sulfur from SufS to SufB, and that the SufBCD complex is the site of Fe–S cluster assembly.  相似文献   

3.
4.
Helicobacter pylori is anomalous among non nitrogen‐fixing bacteria in containing an incomplete NIF system for Fe–S cluster assembly comprising two essential proteins, NifS (cysteine desulfurase) and NifU (scaffold protein). Although nifU deletion strains cannot be obtained via the conventional gene replacement, a NifU‐depleted strain was constructed and shown to be more sensitive to oxidative stress compared to wild‐type (WT) strains. The hp1492 gene, encoding a putative Nfu‐type Fe–S cluster carrier protein, was disrupted in three different H. pylori strains, indicating that it is not essential. However, Δnfu strains have growth deficiency, are more sensitive to oxidative stress and are unable to colonize mouse stomachs. Moreover, Δnfu strains have lower aconitase activity but higher hydrogenase activity than the WT. Recombinant Nfu was found to bind either one [2Fe–2S] or [4Fe–4S] cluster/dimer, based on analytical, UV–visible absorption/CD and resonance Raman studies. A bacterial two‐hybrid system was used to ascertain interactions between Nfu, NifS, NifU and each of 36 putative Fe–S‐containing target proteins. Nfu, NifS and NifU were found to interact with 15, 6 and 29 putative Fe–S proteins respectively. The results indicate that Nfu, NifS and NifU play a major role in the biosynthesis and/or delivery of Fe–S clusters in H. pylori.  相似文献   

5.
Staphylococcus aureus does not produce the low‐molecular‐weight (LMW) thiol glutathione, but it does produce the LMW thiol bacillithiol (BSH). To better understand the roles that BSH plays in staphylococcal metabolism, we constructed and examined strains lacking BSH. Phenotypic analysis found that the BSH‐deficient strains cultured either aerobically or anaerobically had growth defects that were alleviated by the addition of exogenous iron (Fe) or the amino acids leucine and isoleucine. The activities of the iron–sulfur (Fe–S) cluster‐dependent enzymes LeuCD and IlvD, which are required for the biosynthesis of leucine and isoleucine, were decreased in strains lacking BSH. The BSH‐deficient cells also had decreased aconitase and glutamate synthase activities, suggesting a general defect in Fe–S cluster biogenesis. The phenotypes of the BSH‐deficient strains were exacerbated in strains lacking the Fe–S cluster carrier Nfu and partially suppressed by multicopy expression of either sufA or nfu, suggesting functional overlap between BSH and Fe–S carrier proteins. Biochemical analysis found that SufA bound and transferred Fe–S clusters to apo‐aconitase, verifying that it serves as an Fe–S cluster carrier. The results presented are consistent with the hypothesis that BSH has roles in Fe homeostasis and the carriage of Fe–S clusters to apo‐proteins in S. aureus.  相似文献   

6.
Transfer of a biosynthetic pathway between evolutionary distant organisms can create a metabolic shunt capable of bypassing the native regulation of the host organism, hereby improving the production of secondary metabolite precursor molecules for important natural products. Here, we report the engineering of Escherichia coli genes encoding the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway into the genome of Saccharomyces cerevisiae and the characterization of intermediate metabolites synthesized by the MEP pathway in yeast. Our UPLC-MS analysis of the MEP pathway metabolites from engineered yeast showed that the pathway is active until the synthesis of 2-C-methyl-d-erythritol-2,4-cyclodiphosphate, but appears to lack functionality of the last two steps of the MEP pathway, catalyzed by the [4Fe–4S] iron sulfur cluster proteins encoded by ispG and ispH. In order to functionalize the last two steps of the MEP pathway, we co-expressed the genes for the E. coli iron sulfur cluster (ISC) assembly machinery. By deleting ERG13, thereby incapacitating the mevalonate pathway, in conjunction with labeling experiments with U–13C6 glucose and growth experiments, we found that the ISC assembly machinery was unable to functionalize ispG and ispH. However, we have found that leuC and leuD, encoding the heterodimeric iron–sulfur cluster protein, isopropylmalate isomerase, can complement the S. cerevisiae leu1 auxotrophy. To our knowledge, this is the first time a bacterial iron–sulfur cluster protein has been functionally expressed in the cytosol of S. cerevisiae under aerobic conditions and shows that S. cerevisiae has the capability to functionally express at least some bacterial iron–sulfur cluster proteins in its cytosol.  相似文献   

7.
The acquisition and metabolism of iron (Fe) by the human pathogen Staphylococcus aureus is critical for disease progression. S. aureus requires Fe to synthesize inorganic cofactors called iron‐sulfur (Fe‐S) clusters, which are required for functional Fe‐S proteins. In this study we investigated the mechanisms utilized by S. aureus to metabolize Fe‐S clusters. We identified that S. aureus utilizes the Suf biosynthetic system to synthesize Fe‐S clusters and we provide genetic evidence suggesting that the sufU and sufB gene products are essential. Additional biochemical and genetic analyses identified Nfu as an Fe‐S cluster carrier, which aids in the maturation of Fe‐S proteins. We find that deletion of the nfu gene negatively impacts staphylococcal physiology and pathogenicity. A nfu mutant accumulates both increased intracellular non‐incorporated Fe and endogenous reactive oxygen species (ROS) resulting in DNA damage. In addition, a strain lacking Nfu is sensitive to exogenously supplied ROS and reactive nitrogen species. Congruous with ex vivo findings, a nfu mutant strain is more susceptible to oxidative killing by human polymorphonuclear leukocytes and displays decreased tissue colonization in a murine model of infection. We conclude that Nfu is necessary for staphylococcal pathogenesis and establish Fe‐S cluster metabolism as an attractive antimicrobial target.  相似文献   

8.
9.
Among the iron‐sulphur cluster assembly proteins encoded by gene cluster iscSUAhscBAfdx in Escherichia coli, IscA has a unique and strong iron binding activity and can provide iron for iron‐sulphur cluster assembly in proteins in vitro. Deletion of IscA and its paralogue SufA results in an E. coli mutant that fails to assemble [4Fe‐4S] clusters in proteins under aerobic conditions, suggesting that IscA has a crucial role for iron‐sulphur cluster biogenesis. Here we report that among the iron‐sulphur cluster assembly proteins, IscA also has a strong and specific binding activity for Cu(I) in vivo and in vitro. The Cu(I) centre in IscA is stable and resistant to oxidation under aerobic conditions. Mutation of the conserved cysteine residues that are essential for the iron binding in IscA abolishes the copper binding activity, indicating that copper and iron may share the same binding site in the protein. Additional studies reveal that copper can compete with iron for the metal binding site in IscA and effectively inhibits the IscA‐mediated [4Fe‐4S] cluster assembly in E. coli cells. The results suggest that copper may not only attack the [4Fe‐4S] clusters in dehydratases, but also block the [4Fe‐4S] cluster assembly in proteins by targeting IscA in cells.  相似文献   

10.
Cysteine desulphurases are primary sources of sulphur that can eventually be used for Fe/S biogenesis or thiolation of various cofactors and tRNA. Escherichia coli contains three such enzymes, IscS, SufS and CsdA. The importance of IscS and SufS in Fe/S biogenesis is well established. The physiological role of CsdA in contrast remains uncertain. We provide here additional evidences for a functional redundancy between the three cysteine desulphurases in vivo. In particular, we show that a deficiency in isoprenoid biosynthesis is the unique cause of the lethality of the iscS sufS mutant. Moreover, we show that CsdA is engaged in two separate sulphur transfer pathways. In one pathway, CsdA interacts functionally with SufE–SufBCD proteins to assist Fe/S biogenesis. In another pathway, CsdA interacts with CsdE and a newly discovered protein, which we called CsdL, resembling E1‐like proteins found in ubiquitin‐like modification systems. We propose this new pathway to allow synthesis of an as yet to be discovered thiolated compound.  相似文献   

11.
12.
The yeast Saccharomyces cerevisiae is able to use some biotin precursors for biotin biosynthesis. Insertion of a sulfur atom into desthiobiotin, the final step in the biosynthetic pathway, is catalyzed by biotin synthase (Bio2). This mitochondrial protein contains two iron-sulfur (Fe/S) clusters that catalyze the reaction and are thought to act as a sulfur donor. To identify new components of biotin metabolism, we performed a genetic screen and found that Isa2, a mitochondrial protein involved in the formation of Fe/S proteins, is necessary for the conversion of desthiobiotin to biotin. Depletion of Isa2 or the related Isa1, however, did not prevent the de novo synthesis of any of the two Fe/S centers of Bio2. In contrast, Fe/S cluster assembly on Bio2 strongly depended on the Isu1 and Isu2 proteins. Both isa mutants contained low levels of Bio2. This phenotype was also found in other mutants impaired in mitochondrial Fe/S protein assembly and in wild-type cells grown under iron limitation. Low Bio2 levels, however, did not cause the inability of isa mutants to utilize desthiobiotin, since this defect was not cured by overexpression of BIO2. Thus, the Isa proteins are crucial for the in vivo function of biotin synthase but not for the de novo synthesis of its Fe/S clusters. Our data demonstrate that the Isa proteins are essential for the catalytic activity of Bio2 in vivo.  相似文献   

13.
Streptomyces is well known for synthesis of many biologically active secondary metabolites, such as polyketides and non-ribosomal peptides. Understanding the coupling mechanisms of primary and secondary metabolism can help develop strategies to improve secondary metabolite production in Streptomyces. In this work, Streptomyces albus ZD11, an oil-preferring industrial Streptomyces strain, was proved to have a remarkable capability to generate abundant acyl-CoA precursors for salinomycin biosynthesis with the aid of its enhanced β-oxidation pathway. It was found that the salinomycin biosynthetic gene cluster contains a predicted 3-hydroxyacyl-CoA dehydrogenase (FadB3), which is the third enzyme of β-oxidation cycle. Deletion of fadB3 significantly reduced the production of salinomycin. A variety of experimental evidences showed that FadB3 was mainly involved in the β-oxidation pathway rather than ethylmalonyl-CoA biosynthesis and played a very important role in regulating the rate of β-oxidation in S. albus ZD11. Our findings elucidate an interesting coupling mechanism by which a PKS biosynthetic gene cluster could regulate the β-oxidation pathway by carrying β-oxidation genes, enabling Streptomyces to efficiently synthesize target polyketides and economically utilize environmental nutrients.  相似文献   

14.
In eukaryotes, frataxin deficiency (FXN) causes severe phenotypes including loss of iron‐sulfur (Fe‐S) cluster protein activity, accumulation of mitochondrial iron and leads to the neurodegenerative disease Friedreich's ataxia. In contrast, in prokaryotes, deficiency in the FXN homolog, CyaY, was reported not to cause any significant phenotype, questioning both its importance and its actual contribution to Fe‐S cluster biogenesis. Because FXN is conserved between eukaryotes and prokaryotes, this surprising discrepancy prompted us to reinvestigate the role of CyaY in Escherichia coli. We report that CyaY (i) potentiates E. coli fitness, (ii) belongs to the ISC pathway catalyzing the maturation of Fe‐S cluster‐containing proteins and (iii) requires iron‐rich conditions for its contribution to be significant. A genetic interaction was discovered between cyaY and iscX, the last gene of the isc operon. Deletion of both genes showed an additive effect on Fe‐S cluster protein maturation, which led, among others, to increased resistance to aminoglycosides and increased sensitivity to lambda phage infection. Together, these in vivo results establish the importance of CyaY as a member of the ISC‐mediated Fe‐S cluster biogenesis pathway in E. coli, like it does in eukaryotes, and validate IscX as a new bona fide Fe‐S cluster biogenesis factor.  相似文献   

15.
Aims: The aims of this study are to obtain the draft genome sequence of Streptomyces coelicoflavus ZG0656, which produces novel acarviostatin family α‐amylase inhibitors, and then to reveal the putative acarviostatin‐related gene cluster and the biosynthetic pathway. Methods and Results: The draft genome sequence of S. coelicoflavus ZG0656 was generated using a shotgun approach employing a combination of 454 and Solexa sequencing technologies. Genome analysis revealed a putative gene cluster for acarviostatin biosynthesis, termed sct‐cluster. The cluster contains 13 acarviostatin synthetic genes, six transporter genes, four starch degrading or transglycosylation enzyme genes and two regulator genes. On the basis of bioinformatic analysis, we proposed a putative biosynthetic pathway of acarviostatins. The intracellular steps produce a structural core, acarviostatin I00‐7‐P, and the extracellular assemblies lead to diverse acarviostatin end products. Conclusions: The draft genome sequence of S. coelicoflavus ZG0656 revealed the putative biosynthetic gene cluster of acarviostatins and a putative pathway of acarviostatin production. Significance and Impact of the Study: To our knowledge, S. coelicoflavus ZG0656 is the first strain in this species for which a genome sequence has been reported. The analysis of sct‐cluster provided important insights into the biosynthesis of acarviostatins. This work will be a platform for producing novel variants and yield improvement.  相似文献   

16.
17.
Spinosyns A and D are the active ingredients in a family of insect control agents produced by fermentation of Saccharopolyspora spinosa. Spinosyns are 21–carbon tetracyclic lactones to which are attached two deoxysugars. Most of the genes involved in spinosyn biosynthesis are clustered in an 74 kb region of the S. spinosa genome. This region has been characterized by DNA sequence analysis and by targeted gene disruptions. The spinosyn biosynthetic gene cluster contains five large genes encoding a type I polyketide synthase, and 14 genes involved in modification of the macrolactone, or in the synthesis, modification and attachment of the deoxysugars. Four genes required for rhamnose biosynthesis (two of which are also required for forosamine biosynthesis) are not present in the cluster. A pathway for the biosynthesis of spinosyns is proposed.  相似文献   

18.
Cytosolic and nuclear iron‐sulphur (Fe/S) proteins include essential components involved in protein translation, DNA synthesis and DNA repair. In yeast and human cells, assembly of their Fe/S cofactor is accomplished by the CIA (cytosolic iron‐sulphur protein assembly) machinery comprised of some 10 proteins. To investigate the extent of conservation of the CIA pathway, we examined its importance in the early‐branching eukaryote Trypanosoma brucei that encodes all known CIA factors. Upon RNAi‐mediated ablation of individual, early‐acting CIA proteins, no major defects were observed in both procyclic and bloodstream stages. In contrast, parallel depletion of two CIA components was lethal, and severely diminished cytosolic aconitase activity lending support for a direct role of the CIA proteins in cytosolic Fe/S protein biogenesis. In support of this conclusion, the T. brucei CIA proteins complemented the growth defects of their respective yeast CIA depletion mutants. Finally, the T. brucei CIA factor Tah18 was characterized as a flavoprotein, while its binding partner Dre2 functions as a Fe/S protein. Together, our results demonstrate the essential and conserved function of the CIA pathway in cytosolic Fe/S protein assembly in both developmental stages of this representative of supergroup Excavata.  相似文献   

19.
The isoprenoid biosynthetic pathway is a very complex route that entails multiple steps and generates a high number of end-products that are essential for cell viability such as sterols, dolichols, coenzyme Q, heme and prenylated proteins. In parasites from the Trypanosomatidae family this pathway provides new potential drug targets for exploitation in the search for improved therapies, and indeed compounds such as ketoconazole, aminobisphosphonates or terbinafine have been shown to have antiprotozoal activity both in vitro and in vivo. However, despite the high therapeutic importance of the pathway, the subcellular compartmentalization of the different steps of isoprenoid biosynthesis is not known in detail. Here we have analysed the intracellular location of the enzymes 3-hydroxy-3-methyl-glutaryl Coenzyme A (HMG-CoA) synthase (HMGS) and mevalonate kinase (MVAK) in Leishmania major promastigotes as well as in Trypanosoma brucei procyclic and bloodstream forms. For this purpose we generated specific polyclonal antibodies against both highly purified recombinant proteins and used those in indirect immunofluorescence and digitonin titration experiments. Results show that sterol biosynthesis is distributed in multiple intracellular compartments and provide evidence indicating that in trypanosomatids the production of HMG-CoA from acetyl Coenzyme A and generation of mevalonate occur mainly in the mitochondrion while further mevalonate phosphorylation is almost exclusively located in glycosomes. Furthermore, we have determined that peroxin 2 (PEX2) is involved in efficient targeting of MVAK and that the enzyme is relocated to the cytosol upon depletion of this peroxin involved in glycosomal matrix protein import.  相似文献   

20.
Clavulanic acid is a secondary metabolite produced by Streptomyces clavuligerus. It possesses a clavam structure and a characteristic 3R,5R stereochemistry essential for action as a β-lactamase inhibitory molecule. It is produced from glyceraldehyde-3-phosphate and arginine in an eight step biosynthetic pathway. The pathway is carried out by unusual enzymes, such as (1) the enzyme condensing both precursors, N 2-(2-carboxyethyl)-arginine (CEA) synthetase, (2) the β-lactam synthetase cyclizing CEA and (3) the clavaminate synthetase, a well-characterized multifunctional enzyme. Genes for biosynthesis of clavulanic acid and other clavams have been cloned and characterized. They offer new possibilities for modification of the pathway and for obtaining new molecules with a clavam structure. The state of the regulatory proteins controlling clavulanic acid biosynthesis, as well as the relationship between the biosynthetic pathway of clavulanic acid and other clavams, is discussed. Received: 9 February 2000 / Received revision: 10 May 2000 / Accepted: 12 May 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号