首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The cytoplasmic level of flagellin (called Hag) is homeostatically regulated in the Gram-positive bacterium Bacillus subtilis by a partner-switching mechanism between the protein FliW and either the Hag structural protein or CsrA, an RNA binding protein that represses hag translation. Here we show that FliW and the putative secretion chaperone FliS bind to Hag simultaneously but control Hag translation by different mechanisms. While FliW directly inhibits CsrA activity, FliS antagonizes CsrA indirectly by binding to Hag, enhancing Hag secretion, and depleting Hag in the cytoplasm to trigger the FliW partner switch. Consistent with a role for FliS in potentiating Hag secretion, the mutation of fliS crippled both motility and flagellar filament assembly, and both phenotypes could be partially rescued by artificially increasing the concentration of the Hag substrate through the absence of CsrA. Furthermore, the absence of FliS resulted in an approximately 30-fold reduction in extracellular Hag accumulation in cells mutated for CsrA (to relieve homeostatic control) and the filament cap protein FliD (to secrete flagellin into the supernatant). Thus, we mechanistically discriminate between the FliW regulator and the FliS chaperone to show that secretion disrupts flagellin homeostasis and promotes high-level flagellin synthesis during the period of filament assembly in B. subtilis.  相似文献   

3.
Bacterial flagella play an essential role in the pathogenesis of numerous enteric pathogens. The flagellum is required for motility, colonization, and in some instances, for the secretion of effector proteins. In contrast to the intensively studied flagella of Escherichia coli and Salmonella typhimurium, the flagella of Campylobacter jejuni, Helicobacter pylori and Vibrio cholerae are less well characterized and composed of multiple flagellin subunits. This study was performed to gain a better understanding of flagellin export from the flagellar type III secretion apparatus of C. jejuni. The flagellar filament of C. jejuni is comprised of two flagellins termed FlaA and FlaB. We demonstrate that the amino‐termini of FlaA and FlaB determine the length of the flagellum and motility of C. jejuni. We also demonstrate that protein‐specific residues in the amino‐terminus of FlaA and FlaB dictate export efficiency from the flagellar type III secretion system (T3SS) of Yersinia enterocolitica. These findings demonstrate that key residues within the amino‐termini of two nearly identical proteins influence protein export efficiency, and that the mechanism governing the efficiency of protein export is conserved among two pathogens belonging to distinct bacterial classes. These findings are of additional interest because C. jejuni utilizes the flagellum to export virulence proteins.  相似文献   

4.
5.
Unlike external flagellated bacteria, spirochetes have periplasmic flagella (PF). Very little is known about how PF are assembled within the periplasm of spirochaetal cells. Herein, we report that FliD (BB0149), a flagellar cap protein (also named hook‐associated protein 2), controls flagellin stability and flagellar filament assembly in the Lyme disease spirochete Borrelia burgdorferi. Deletion of fliD leads to non‐motile mutant cells that are unable to assemble flagellar filaments and pentagon‐shaped caps (10 nm in diameter, 12 nm in length). Interestingly, FlaB, a major flagellin protein of B. burgdorferi, is degraded in the fliD mutant but not in other flagella‐deficient mutants (i.e., in the hook, rod, or MS‐ring). Biochemical and genetic studies reveal that HtrA, a serine protease of B. burgdorferi, controls FlaB turnover. Specifically, HtrA degrades unfolded but not polymerized FlaB, and deletion of htrA increases the level of FlaB in the fliD mutant. Collectively, we propose that the flagellar cap protein FliD promotes flagellin polymerization and filament growth in the periplasm. Deletion of fliD abolishes this process, which leads to leakage of unfolded FlaB proteins into the periplasm where they are degraded by HtrA, a protease that prevents accumulation of toxic products in the periplasm.  相似文献   

6.
7.
8.
Bacteriophage receptor‐binding proteins (RBPs) confer host specificity. We previously identified a putative RBP (Gp047) from the campylobacter lytic phage NCTC 12673 and demonstrated that Gp047 has a broader host range than its parent phage. While NCTC 12673 recognizes the capsular polysaccharide (CPS) of a limited number of Campylobacter jejuni isolates, Gp047 binds to a majority of C. jejuni and related Campylobacter coli strains. In this study, we demonstrate that Gp047 also binds to acapsular mutants, suggesting that unlike the parent phage, CPS is not the receptor for Gp047. Affinity chromatography and far‐western analyses of C. jejuni lysates using Gp047 followed by mass spectrometry indicated that Gp047 binds to the major flagellin protein, FlaA. Because C. jejuni flagellin is extensively glycosylated, we investigated this binding specificity further and demonstrate that Gp047 only recognizes flagellin decorated with acetamidino‐modified pseudaminic acid. This binding activity is localized to the C‐terminal quarter of the protein and both wild‐type and coccoid forms of C. jejuni are recognized. In addition, Gp047 treatment agglutinates vegetative cells and reduces their motility. Because Gp047 is highly conserved among all campylobacter phages sequenced to date, it is likely that this protein plays an important role in the phage life cycle.  相似文献   

9.
10.
Flagella are essential for motility and have been implicated to be one of the pathogenic determinants. The flagellum ofCampylobacter jejuni is a polymeric structure of a 62-kd protein. Using a high-affinity flagellin antibody to screen a lambda gt 11 phage genomic expression library ofC. jejuni strain TGH9011 (Serotype LIO36), a recombinant phage clone lambda gt 11RK that expresses theC. jejuni flagellin protein was isolated. The recombinant lambda gt 11 RK produced a 56-kd protein upon induction with isopropylthiogalactoside, which reacted specifically with anti-flagellin antibody. The flagellin gene was sequenced, and comparative analysis of the nucleotide and amino acid sequence identified a region of the flagellin that shows hypervariability among differentCampylobacter species and strains.  相似文献   

11.
12.
The mode of polymerization of two species of flagellins, flagellin A and flagellin B, in polar flagella of Caulobacter crescentus was examined. By immunological staining we found that 1 to 1.2 μm of the portion of the flagellar filament proximal to the cell was composed of flagellin B, whereas about 5 μm of the distal portion was composed of flagellin A. This result, together with the previous observation that a flagellin B-less mutant cannot form normal flagella but instead forms stubs in spite of their high level of flagellin A synthesis, indicates that flagellin B is very important for the formation of complete flagella and/or for the initiation of filament formation from the hook.  相似文献   

13.
14.
15.
Flagellar filament self‐assembles from the component protein, flagellin or FliC, with the aid of the capping protein, HAP2 or FliD. Depending on the helical parameters of filaments, flagella from various species are divided into three groups, family I, II, and III. Each family coincides with the traditional classification of flagella, peritrichous flagella, polar flagella, and lateral flagella, respectively. To elucidate the physico‐chemical properties of flagellin to separate families, we chose family I flagella and family II flagella and examined how well the exchangeability of a combination of FliC and/or FliD from different families is kept in filament formation. FliC or FliD of Salmonella enterica serovar Typhimurium (Salty; family I) were exchanged with those of Escherichia coli (Escco; family I) or Pseudomonas aeruginosa (Pseae; family II). In a Salty fliC deletion mutant, Escco FliC formed short filaments, but Pseae FliC did not form filaments. In a Salty fliD deletion mutant, both Escco FliD and Pseae FliD allowed Salty FliC to polymerize into short filaments. In conclusion, FliC can be exchanged among the same family but not between different families, while FliD serves as the cap protein even in different families, confirming that FliC is essential for determining families, but FliD plays a subsidiary role in filament formation. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
17.
18.
Flagella are nanofibers that drive bacterial movement. The filaments are generally composed of thousands of tightly packed flagellin subunits with a terminal cap protein, named FliD. Here, we report that the FliD protein of the bacterial pathogen Campylobacter jejuni binds to host cells. Live‐cell imaging and confocal microscopy showed initial contact of the bacteria with epithelial cells via the flagella tip. Recombinant FliD protein bound to the surface of intestinal epithelial cells in a dose‐dependent fashion. Search for the FliD binding site on the host cell using cells with defined glycosylation defects indicated glycosaminoglycans as a putative target. Heparinase treatment of wild type cells and an excess of soluble heparin abolished FliD binding. Binding assays showed direct and specific binding of FliD to heparin. Addition of an excess of purified FliD or heparin reduced the attachment of viable Cjejuni to the host cells. The host cell binding domain of FliD was mapped to the central region of the protein. Overall, our results indicate that the Cjejuni flagellar tip protein FliD acts as an attachment factor that interacts with cell surface heparan sulfate glycosaminoglycan receptors.  相似文献   

19.
20.
Bacterial swimming is mediated by rotation of a filament that is assembled via polymerization of flagellin monomers after secretion via a dedicated flagellar Type III secretion system. Several bacteria decorate their flagellin with sialic acid related sugars that is essential for motility. Aeromonas caviae is a model organism for this process as it contains a genetically simple glycosylation system and decorates its flagellin with pseudaminic acid (Pse). The link between flagellin glycosylation and export has yet to be fully determined. We examined the role of glycosylation in the export and assembly process in a strain lacking Maf1, a protein involved in the transfer of Pse onto flagellin at the later stages of the glycosylation pathway. Immunoblotting, established that glycosylation is not required for flagellin export but is essential for filament assembly since non‐glycosylated flagellin is still secreted. Maf1 interacts directly with its flagellin substrate in vivo, even in the absence of pseudaminic acid. Flagellin glycosylation in a flagellin chaperone mutant (flaJ) indicated that glycosylation occurs in the cytoplasm before chaperone binding and protein secretion. Preferential chaperone binding to glycosylated flagellin revealed its crucial role, indicating that this system has evolved to favour secretion of the polymerization competent glycosylated form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号