首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Francisella tularensis is a facultative intracellular pathogen that infects a wide variety of mammals and causes tularemia in humans. It is recognized as a potential agent of bioterrorism due to its low infectious dose and multiple routes of transmission. To date, genetic manipulation in Francisella spp. has been limited due to the inefficiency of DNA transformation, the relative lack of useful selective markers, and the lack of stably replicating plasmids. Therefore, the goal of this study was to develop an enhanced shuttle plasmid that could be utilized for a variety of genetic procedures in both Francisella and Escherichia coli. A hybrid plasmid, pFNLTP1, was isolated that was transformed by electroporation at frequencies of >1 × 107 CFU μg of DNA−1 in F. tularensis LVS, Francisella novicida U112, and E. coli DH5α. Furthermore, this plasmid was stably maintained in F. tularensis LVS after passage in the absence of antibiotic selection in vitro and after 3 days of growth in J774A.1 macrophages. Importantly, F. tularensis LVS derivatives carrying pFNLTP1 were unaltered in their growth characteristics in laboratory medium and macrophages compared to wild-type LVS. We also constructed derivatives of pFNLTP1 containing expanded multiple cloning sites or temperature-sensitive mutations that failed to allow plasmid replication in F. tularensis LVS at the nonpermissive temperature. In addition, the utility of pFNLTP1 as a vehicle for gene expression, as well as complementation, was demonstrated. In summary, we describe construction of a Francisella shuttle plasmid that is transformed at high efficiency, is stably maintained, and does not alter the growth of Francisella in macrophages. This new tool should significantly enhance genetic manipulation and characterization of F. tularensis and other Francisella biotypes.  相似文献   

2.
The virulence of F. tularensis is often associated with its ability to grow in macrophages, although recent studies show that Francisella proliferates in multiple host cell types, including pulmonary epithelial cells. Thus far little is known about the requirements for killing of F. tularensis in the non-macrophage host cell types that support replication of this organism. Here we sought to address this question through the use of a murine lung epithelial cell line (TC-1 cells). Our data show that combinations of the cytokines IFN-γ, TNF, and IL-17A activated murine pulmonary epithelial cells to inhibit the intracellular growth of the F. tularensis Live Vaccine Strain (LVS) and the highly virulent F. tularensis Schu S4 strain. Although paired combinations of IFN-γ, TNF, and IL-17A all significantly controlled LVS growth, simultaneous treatment with all three cytokines had the greatest effect on LVS growth inhibition. In contrast, Schu S4 was more resistant to cytokine-induced growth effects, exhibiting significant growth inhibition only in response to all three cytokines. Since one of the main antimicrobial mechanisms of activated macrophages is the release of reactive nitrogen intermediates (RNI) via the activity of iNOS, we investigated the role of RNI and iNOS in Francisella growth control by pulmonary epithelial cells. NOS2 gene expression was significantly up-regulated in infected, cytokine-treated pulmonary epithelial cells in a manner that correlated with LVS and Schu S4 growth control. Treatment of LVS-infected cells with an iNOS inhibitor significantly reversed LVS killing in cytokine-treated cultures. Further, we found that mouse pulmonary epithelial cells produced iNOS during in vivo respiratory LVS infection. Overall, these data demonstrate that lung epithelial cells produce iNOS both in vitro and in vivo, and can inhibit Francisella intracellular growth via reactive nitrogen intermediates.  相似文献   

3.
Francisella tularensis, the causative agent of a fatal human disease known as tularemia, has been used in the bioweapon programs of several countries in the past, and now it is considered a potential bioterror agent. Extreme infectivity and virulence of F. tularensis is due to its ability to evade immune detection and to suppress the host''s innate immune responses. However, Francisella-encoded factors and mechanisms responsible for causing immune suppression are not completely understood. Macrophages and neutrophils generate reactive oxygen species (ROS)/reactive nitrogen species as a defense mechanism for the clearance of phagocytosed microorganisms. ROS serve a dual role; at high concentrations they act as microbicidal effector molecules that destroy intracellular pathogens, and at low concentrations they serve as secondary signaling messengers that regulate the expression of various inflammatory mediators. We hypothesized that the antioxidant defenses of F. tularensis maintain redox homeostasis in infected macrophages to prevent activation of redox-sensitive signaling components that ultimately result in suppression of pro-inflammatory cytokine production and macrophage microbicidal activity. We demonstrate that antioxidant enzymes of F. tularensis prevent the activation of redox-sensitive MAPK signaling components, NF-κB signaling, and the production of pro-inflammatory cytokines by inhibiting the accumulation of ROS in infected macrophages. We also report that F. tularensis inhibits ROS-dependent autophagy to promote its intramacrophage survival. Collectively, this study reveals novel pathogenic mechanisms adopted by F. tularensis to modulate macrophage innate immune functions to create an environment permissive for its intracellular survival and growth.  相似文献   

4.
Francisella tularensis is a category A biodefence agent that causes a fatal human disease known as tularaemia. The pathogenicity of F. tularensis depends on its ability to persist inside host immune cells primarily by resisting an attack from host‐generated reactive oxygen and nitrogen species (ROS/RNS). Based on the ability of F. tularensis to resist high ROS/RNS levels, we have hypothesized that additional unknown factors act in conjunction with known antioxidant defences to render ROS resistance. By screening a transposon insertion library of F. tularensis LVS in the presence of hydrogen peroxide, we have identified an oxidant‐sensitive mutant in putative EmrA1 (FTL_0687) secretion protein. The results demonstrate that the emrA1 mutant is highly sensitive to oxidants and several antimicrobial agents, and exhibits diminished intramacrophage growth that can be restored to wild‐type F. tularensis LVS levels by either transcomplementation, inhibition of ROS generation or infection in NADPH oxidase deficient (gp91Phox?/?) macrophages. The emrA1 mutant is attenuated for virulence, which is restored by infection in gp91Phox?/? mice. Further, EmrA1 contributes to oxidative stress resistance by affecting secretion of Francisella antioxidant enzymes SodB and KatG. This study exposes unique links between transporter activity and the antioxidant defence mechanisms of F. tularensis.  相似文献   

5.
Francisella tularensis causes the human disease tularemia. F. tularensis is able to survive and replicate within macrophages, a trait that has been correlated with its high virulence, but it is unclear the exact mechanism(s) this organism uses to escape killing within this hostile environment. F. tularensis virulence is dependent upon the Francisella pathogenicity island (FPI), a cluster of genes that we show here shares homology with type VI secretion gene clusters in Vibrio cholerae and Pseudomonas aeruginosa. We demonstrate that two FPI proteins, VgrG and IglI, are secreted into the cytosol of infected macrophages. VgrG and IglI are required for F. tularensis phagosomal escape, intramacrophage growth, inflammasome activation and virulence in mice. Interestingly, VgrG secretion does not require the other FPI genes. However, VgrG and other FPI genes, including PdpB (an IcmF homologue), are required for the secretion of IglI into the macrophage cytosol, suggesting that VgrG and other FPI factors are components of a secretion system. This is the first report of F. tularensis FPI virulence proteins required for intramacrophage growth that are translocated into the macrophage.  相似文献   

6.
Arthropod vectors are important vehicles for transmission of Francisella tularensis between mammals, but very little is known about the F. tularensis–arthropod vector interaction. Drosophila melanogaster has been recently developed as an arthropod vector model for F. tularensis. We have shown that intracellular trafficking of F. tularensis within human monocytes‐derived macrophages and D. melanogaster‐derived S2 cells is very similar. Within both evolutionarily distant host cells, the Francisella‐containing phagosome matures to a late endosome‐like phagosome with limited fusion to lysosomes followed by rapid bacterial escape into the cytosol where the bacterial proliferate. To decipher the molecular bases of intracellular proliferation of F. tularensis within arthropod‐derived cells, we screened a comprehensive library of mutants of F. tularensis ssp. novicida for their defect in intracellular proliferation within D. melanogaster‐derived S2 cells. Our data show that 394 genes, representing 22% of the genome, are required for intracellular proliferation within D. melanogaster‐derived S2 cells, including many of the Francisella Pathogenicity Island (FPI) genes that are also required for proliferation within mammalian macrophages. Functional gene classes that exhibit growth defect include metabolic (25%), FPI (2%), type IV pili (1%), transport (16%) and DNA modification (5%). Among 168 most defective mutants in intracellular proliferation in S2 cells, 80 are defective in lethality and proliferation within adult D. melanogaster. The observation that only 135 of the 394 mutants that are defective in S2 cells are also defective in human macrophages indicates that F. tularensis utilize common as well as distinct mechanisms to proliferate within mammalian and arthropod cells. Our studies will facilitate deciphering the molecular aspects of F. tularensis–arthropod vector interaction and its patho‐adaptation to infect mammals.  相似文献   

7.
Francisella tularensis is a highly infectious intracellular bacterium that causes the fulminating disease tularemia, which can be transmitted between mammals by arthorpod vectors. Genomic studies have shown that the F. tularensis has been undergoing genomic decay with the most virulent strains having the lowest number of functional genes. Entry of F. tularensis into macrophages is mediated by looping phagocytosis and is associated with signalling through Syk tyrosine kinase. Within macrophages and arthropod‐derived cells, the Francisella‐containing phagosome matures transiently into an acidified late endosome‐like phagosome with limited fusion to lysosomes followed by rapid bacterial escape into the cytosol within 30–60 min, and bacterial proliferation within the cytosol. The Francisella pathogenicity island, which potentially encodes a putative type VI secretion system, is essential for phagosome biogenesis and bacterial escape into the cytosol within macrophages and arthropod‐derived cells. Initial sensing of F. tularensis in the cytosol triggers IRF‐3‐dependent IFN‐β secretion, type I IFNR‐dependent signalling, activation of the inflammasome mediated by caspase‐1, and a pro‐inflammatory response, which is suppressed by triggering of SHIP. The past few years have witnessed a quantum leap in our understanding of various aspects of this organism and this review will discuss these remarkable advances.  相似文献   

8.
Francisella tularensis is an important human pathogen responsible for causing tularemia. F. tularensis has long been developed as a biological weapon and is now classified as a category A agent by the Centers for Disease Control because of its possible use as a bioterror agent. F. tularensis represses inflammasome; a cytosolic multi-protein complex that activates caspase-1 to produce proinflammatory cytokines IL-1β and IL-18. However, the Francisella factors and the mechanisms through which F. tularensis mediates these suppressive effects remain relatively unknown. Utilizing a mutant of F. tularensis in FTL_0325 gene, this study investigated the mechanisms of inflammasome repression by F. tularensis. We demonstrate that muted IL-1β and IL-18 responses generated in macrophages infected with F. tularensis live vaccine strain (LVS) or the virulent SchuS4 strain are due to a predominant suppressive effect on TLR2-dependent signal 1. Our results also demonstrate that FTL_0325 of F. tularensis impacts proIL-1β expression as early as 2 h post-infection and delays activation of AIM2 and NLRP3-inflammasomes in a TLR2-dependent fashion. An enhanced activation of caspase-1 and IL-1β observed in FTL_0325 mutant-infected macrophages at 24 h post-infection was independent of both AIM2 and NLRP3. Furthermore, F. tularensis LVS delayed pyroptotic cell death of the infected macrophages in an FTL_0325-dependent manner during the early stages of infection. In vivo studies in mice revealed that suppression of IL-1β by FTL_0325 early during infection facilitates the establishment of a fulminate infection by F. tularensis. Collectively, this study provides evidence that F. tularensis LVS represses inflammasome activation and that F. tularensis-encoded FTL_0325 mediates this effect.  相似文献   

9.
10.
Here, we constructed stable, constitutively expressed, chromosomal green (GFP) and red fluorescent (RFP) reporters in the genome of the surrogate strain, Francisella tularensis spp. holarctica LVS (herein LVS), and the select agent, F. tularensis Schu S4. A bioinformatic approach was used to identify constitutively expressed genes. Two promoter regions upstream of the FTT1794 and rpsF(FTT1062) genes were selected and fused with GFP and RFP reporter genes in pMP815, respectively. While the LVS strains with chromosomally integrated reporter fusions exhibited fluorescence, we were unable to deliver the same fusions into Schu S4. Neither a temperature-sensitive Francisella replicon nor a pBBR replicon in the modified pMP815 derivatives facilitated integration. However, a mini-Tn7 integration system was successful at integrating the reporter fusions into the Schu S4 genome. Finally, fluorescent F. tularensis LVS and a mutant lacking MglA were assessed for growth in monocyte-derived macrophages (MDMs). As expected, when compared to wild-type bacteria, replication of an mglA mutant was significantly diminished, and the overall level of fluorescence dramatically decreased with infection time. The utility of the fluorescent Schu S4 strain was also examined within infected MDMs treated with clarithromycin and enrofloxacin. Taken together, this study describes the development of an important reagent for F. tularensis research, especially since the likelihood of engineered antibiotic resistant strains will emerge with time. Such strains will be extremely useful in high-throughput screens for novel compounds that could interfere with critical virulence processes in this important bioweapons agent and during infection of alveolar macrophages.  相似文献   

11.
Gram-negative bacteria have evolved sophisticated secretion machineries specialized for the secretion of macromolecules important for their life cycles. The Type VI secretion system (T6SS) is the most widely spread bacterial secretion machinery and is encoded by large, variable gene clusters, often found to be essential for virulence. The latter is true for the atypical T6SS encoded by the Francisella pathogenicity island (FPI) of the highly pathogenic, intracellular bacterium Francisella tularensis. We here undertook a comprehensive analysis of the intramacrophage secretion of the 17 FPI proteins of the live vaccine strain, LVS, of F. tularensis. All were expressed as fusions to the TEM β-lactamase and cleavage of the fluorescent substrate CCF2-AM, a direct consequence of the delivery of the proteins into the macrophage cytosol, was followed over time. The FPI proteins IglE, IglC, VgrG, IglI, PdpE, PdpA, IglJ and IglF were all secreted, which was dependent on the core components DotU, VgrG, and IglC, as well as IglG. In contrast, the method was not directly applicable on F. novicida U112, since it showed very intense native β-lactamase secretion due to FTN_1072. Its role was proven by ectopic expression in trans in LVS. We did not observe secretion of any of the LVS substrates VgrG, IglJ, IglF or IglI, when tested in a FTN_1072 deficient strain of F. novicida, whereas IglE, IglC, PdpA and even more so PdpE were all secreted. This suggests that there may be fundamental differences in the T6S mechanism among the Francisella subspecies. The findings further corroborate the unusual nature of the T6SS of F. tularensis since almost all of the identified substrates are unique to the species.  相似文献   

12.
Virulent Francisella tularensis ssp tularensis is an intracellular, Gram negative bacterium that causes acute lethal disease following inhalation of fewer than 15 organisms. Pathogenicity of Francisella infections is tied to its unique ability to evade and suppress inflammatory responses in host cells. It has been proposed that induction of alternative activation of infected macrophages is a mechanism by which attenuated Francisella species modulate host responses. In this report we reveal that neither attenuated F. tularensis Live Vaccine Strain (LVS) nor virulent F. tularensis strain SchuS4 induce alternative activation of macrophages in vitro or in vivo. LVS, but not SchuS4, provoked production of arginase1 independent of alternative activation in vitro and in vivo. However, absence of arginase1 did not significantly impact intracellular replication of LVS or SchuS4. Together our data establish that neither induction of alternative activation nor expression of arginase1 are critical features of disease mediated by attenuated or virulent Francisella species.  相似文献   

13.
Francisella tularensis is classified as a Tier 1 select agent by the CDC due to its low infectious dose and the possibility that the organism can be used as a bioweapon. The low dose of infection suggests that Francisella is unusually efficient at evading host defenses. Although ~50 cfu are necessary to cause human respiratory infection, the early interactions of virulent Francisella with the lung environment are not well understood. To provide additional insights into these interactions during early Francisella infection of mice, we performed TEM analysis on mouse lungs infected with F. tularensis strains Schu S4, LVS and the O-antigen mutant Schu S4 waaY::TrgTn. For all three strains, the majority of the bacteria that we could detect were observed within alveolar type II epithelial cells at 16 hours post infection. Although there were no detectable differences in the amount of bacteria within an infected cell between the three strains, there was a significant increase in the amount of cellular debris observed in the air spaces of the lungs in the Schu S4 waaY::TrgTn mutant compared to either the Schu S4 or LVS strain. We also studied the interactions of Francisella strains with human AT-II cells in vitro by characterizing the ability of these three strains to invade and replicate within these cells. Gentamicin assay and confocal microscopy both confirmed that F. tularensis Schu S4 replicated robustly within these cells while F. tularensis LVS displayed significantly lower levels of growth over 24 hours, although the strain was able to enter these cells at about the same level as Schu S4 (1 organism per cell), as determined by confocal imaging. The Schu S4 waaY::TrgTn mutant that we have previously described as attenuated for growth in macrophages and mouse virulence displayed interesting properties as well. This mutant induced significant airway inflammation (cell debris) and had an attenuated growth phenotype in the human AT-II cells. These data extend our understanding of early Francisella infection by demonstrating that Francisella enter significant numbers of AT-II cells within the lung and that the capsule and LPS of wild type Schu S4 helps prevent murine lung damage during infection. Furthermore, our data identified that human AT-II cells allow growth of Schu S4, but these same cells supported poor growth of the attenuated LVS strain in vitro. Collectively, these data further our understanding of the role of AT-II cells in Francisella infections.  相似文献   

14.
Francisella tularensis is a highly infectious bacterium causing the zoonotic disease tularemia. Its ability to multiply and survive in macrophages is critical for its virulence. By screening a bank of HimarFT transposon mutants of the F. tularensis live vaccine strain (LVS) to isolate intracellular growth-deficient mutants, we selected one mutant in a gene encoding a putative γ-glutamyl transpeptidase (GGT). This gene (FTL_0766) was hence designated ggt. The mutant strain showed impaired intracellular multiplication and was strongly attenuated for virulence in mice. Here we present evidence that the GGT activity of F. tularensis allows utilization of glutathione (GSH, γ-glutamyl-cysteinyl-glycine) and γ-glutamyl-cysteine dipeptide as cysteine sources to ensure intracellular growth. This is the first demonstration of the essential role of a nutrient acquisition system in the intracellular multiplication of F. tularensis. GSH is the most abundant source of cysteine in the host cytosol. Thus, the capacity this intracellular bacterial pathogen has evolved to utilize the available GSH, as a source of cysteine in the host cytosol, constitutes a paradigm of bacteria–host adaptation.  相似文献   

15.
Upon entry of Francisella tularensis to macrophages, the Francisella‐containing phagosome (FCP) is trafficked into an acidified late endosome‐like phagosome with limited fusion to the lysosomes followed by rapid escape into the cytosol where the organism replicates. Although the Francisella Pathogenicity Island (FPI), which encodes a type VI‐like secretion apparatus, is required for modulation of phagosome biogenesis and escape into the cytosol, the mechanisms involved are not known. To decipher the molecular bases of modulation of biogenesis of the FCP and bacterial escape into the macrophage cytosol, we have screened a comprehensive mutant library of F. tularensis ssp. novicida for their defect in proliferation within human macrophages, followed by characterization of modulation of phagosome biogenesis and bacterial escape into the cytosol. Our data show that at least 202 genes are required for intracellular proliferation within macrophages. Among the 125 most defective mutants in intracellular proliferation, we show that the FCP of at least 91 mutants colocalize persistently with the late endosomal/lysosomal marker LAMP‐1 and fail to escape into the cytosol, as determined by fluorescence‐based phagosome integrity assays and transmission electron microscopy. At least 34 genes are required for proliferation within the cytosol but do not play a detectable role in modulation of phagosome biogenesis and bacterial escape into the cytosol. Our data indicate a tremendous adaptation and metabolic reprogramming by F. tularensis to adjust to the micro‐environmental and nutritional cues within the FCP, and these adjustments play essential roles in modulation of phagosome biogenesis and escape into the cytosol of macrophages as well as proliferation in the cytosol. The plethora of the networks of genes that orchestrate F. tularensis‐mediated modulation of phagosome biogenesis, phagosomal escape and bacterial proliferation within the cytosol is novel, complex and involves an unusually large portion of the genome of an intracellular pathogen.  相似文献   

16.
Francisella tularensis, a Gram‐negative bacterium that causes the disease tularemia in a large number of animal species, is thought to reside preferentially within macrophages in vivo. F. tularensis has developed mechanisms to rapidly escape from the phagosome into the cytoplasm of infected cells, a habitat with a rich supply of nutrients, ideal for multiplication. SLC1A5 is a neutral amino acid transporter expressed by human cells, which serves, along with SLC7A5 to equilibrate cytoplasmic amino acid pools. We herein analysed whether SLC1A5 was involved in F. tularensis intracellular multiplication. We demonstrate that expression of SLC1A5 is specifically upregulated by F. tularensis in infected THP‐1 human monocytes. Furthermore, we show that SLC1A5 downregulation decreases intracellular bacterial multiplication, supporting the involvement of SLC1A5 in F. tularensis infection. Notably, after entry of F. tularensis into cells and during the whole infection, the highly glycosylated form of SLC1A5 was deglycosylated only by bacteria capable of cytosolic multiplication. These data suggest that intracellular replication of F. tularensis depends on the function of host cell SLC1A5. Our results are the first, which show that Francisella intracellular multiplication in human monocyte cytoplasm is associated with a post‐translational modification of a eukaryotic amino acid transporter.  相似文献   

17.
Summary: Francisella tularensis is a facultative intracellular gram-negative pathogen and the etiological agent of the zoonotic disease tularemia. Recent advances in the field of Francisella genetics have led to a rapid increase in both the generation and subsequent characterization of mutant strains exhibiting altered growth and/or virulence characteristics within various model systems of infection. In this review, we summarize the major properties of several Francisella species, including F. tularensis and F. novicida, and provide an up-to-date synopsis of the genes necessary for pathogenesis by these organisms and the determinants that are currently being targeted for vaccine development.  相似文献   

18.

Background  

Macrolide antibiotics are commonly administered for bacterial respiratory illnesses. Azithromycin (Az) is especially noted for extremely high intracellular concentrations achieved within macrophages which is far greater than the serum concentration. Clinical strains of Type B Francisella (F.) tularensis have been reported to be resistant to Az, however our laboratory Francisella strains were found to be sensitive. We hypothesized that different strains/species of Francisella (including Type A) may have different susceptibilities to Az, a widely used and well-tolerated antibiotic.  相似文献   

19.
The highly infectious bacteria, Francisella tularensis, colonize a variety of organs and replicate within both phagocytic as well as non-phagocytic cells, to cause the disease tularemia. These microbes contain a conserved cluster of important virulence genes referred to as the Francisella Pathogenicity Island (FPI). Two of the most characterized FPI genes, iglC and pdpA, play a central role in bacterial survival and proliferation within phagocytes, but do not influence bacterial internalization. Yet, their involvement in non-phagocytic epithelial cell infections remains unexplored. To examine the functions of IglC and PdpA on bacterial invasion and replication during epithelial cell infections, we infected liver and lung epithelial cells with F. novicida and F. tularensis ‘Type B’ Live Vaccine Strain (LVS) deletion mutants (ΔiglC and ΔpdpA) as well as their respective gene complements. We found that deletion of either gene significantly reduced their ability to invade and replicate in epithelial cells. Gene complementation of iglC and pdpA partially rescued bacterial invasion and intracellular growth. Additionally, substantial LAMP1-association with both deletion mutants was observed up to 12 h suggesting that the absence of IglC and PdpA caused deficiencies in their ability to dissociate from LAMP1-positive Francisella Containing Vacuoles (FCVs). This work provides the first evidence that IglC and PdpA are important pathogenic factors for invasion and intracellular growth of Francisella in epithelial cells, and further highlights the discrete mechanisms involved in Francisella infections between phagocytic and non-phagocytic cells.  相似文献   

20.
Protein glycosylation processes play a crucial role in most physiological functions, including cell signalling, cellular differentiation and adhesion. We previously demonstrated that rapid deglycosylation of membrane proteins was specifically triggered after infection of human macrophages by the bacterial pathogen Francisella tularensis. Using a glycan processing gene microarray, we found here that Francisella infection modulated expression of numerous glycosidase and glycosyltransferase genes. Furthermore, analysis of cell extracts from infected macrophages by Lectin and Western blotting revealed an important increase of N‐ and O‐protein glycosylation. We chose to focus in the present work on one of the O‐glycosylated proteins identified by mass spectrometry, the multifunctional endoplasmic reticulum chaperone BiP (HSPA5/GRP78). We demonstrate that BiP expression is modulated upon Francisella infection and is required to support its intracellular multiplication. Moreover, we show that Francisella differentially modulates the BiP‐dependent activation of three key proteins of the unfolded protein response (UPR), IRE1, PERK and ATF6. The effects exerted on human cells by Francisella may thus constitute a novel excample of UPR manipulation contributing to intracellular bacterial adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号