首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The sugar nucleotide dTDP‐L‐rhamnose is critical for the biosynthesis of the Group A Carbohydrate, the molecular signature and virulence determinant of the human pathogen Group A Streptococcus (GAS). The final step of the four‐step dTDP‐L‐rhamnose biosynthesis pathway is catalyzed by dTDP‐4‐dehydrorhamnose reductases (RmlD). RmlD from the Gram‐negative bacterium Salmonella is the only structurally characterized family member and requires metal‐dependent homo‐dimerization for enzymatic activity. Using a biochemical and structural biology approach, we demonstrate that the only RmlD homologue from GAS, previously renamed GacA, functions in a novel monomeric manner. Sequence analysis of 213 Gram‐negative and Gram‐positive RmlD homologues predicts that enzymes from all Gram‐positive species lack a dimerization motif and function as monomers. The enzymatic function of GacA was confirmed through heterologous expression of gacA in a S. mutans rmlD knockout, which restored attenuated growth and aberrant cell division. Finally, analysis of a saturated mutant GAS library using Tn‐sequencing and generation of a conditional‐expression mutant identified gacA as an essential gene for GAS. In conclusion, GacA is an essential monomeric enzyme in GAS and representative of monomeric RmlD enzymes in Gram‐positive bacteria and a subset of Gram‐negative bacteria. These results will help future screens for novel inhibitors of dTDP‐L‐rhamnose biosynthesis.  相似文献   

3.
Epidemiological studies of group A streptococcus (GAS) have noted an inverse relationship between SpeB expression and invasive disease. However, the role of SpeB in the course of infection is still unclear. In this study we utilize a SpeB-negative M1T1 clinical isolate, 5628, with a naturally occurring mutation in the gene encoding the regulator RopB, to elucidate the role of RopB and SpeB in systemic virulence. Allelic exchange mutagenesis was used to replace the mutated ropB allele in 5628 with the intact allele from the well characterized isolate 5448. The inverse allelic exchange was also performed to replace the intact ropB in 5448 with the mutated allele from 5628. An intact ropB was found to be essential for SpeB expression. While the ropB mutation was shown to have no effect on hemolysis of RBC''s, extracellular DNase activity or survival in the presence of neutrophils, strains with the mutated ropB allele were less virulent in murine systemic models of infection. An isogenic SpeB knockout strain containing an intact RopB showed similarly reduced virulence. Microarray analysis found genes of the SpeB operon to be the primary target of RopB regulation. These data show that an intact RopB and efficient SpeB production are necessary for systemic infection with GAS.  相似文献   

4.
5.
6.
Cerato‐platanin family proteins are secreted and have been found in both the fungal cell wall and the extracellular medium. They elicit defence responses in a variety of plants and have been proposed to be perceived as pathogen‐associated molecular patterns (PAMPs) by the plant immune system, although, in the case of the necrotroph Botrytis cinerea, the cerato‐platanin BcSpl1 contributes to fungal virulence instead of plant resistance. In this study, we report that BcSpl1, which was previously found in the secretome as an abundant protein, is even more abundant in the fungal cell wall. By fusion to green fluorescent protein (GFP), we also show that BcSpl1 associates with the plant plasma membrane causing rapid morphological changes at the cellular level, such as the disorganization of chloroplasts, prior to macroscopic necrosis in the treated tissue. By a combination of serial deletion studies, synthetic peptides and chimeric proteins, we mapped the eliciting activity to a two‐peptide motif in the protein surface. The expression of a chimeric protein displaying this motif in B. cinerea mutants lacking BcSpl1 undoubtedly showed that the motif is responsible for the contribution of BcSpl1 to virulence.  相似文献   

7.
The group A Streptococcus (GAS) causes diseases that range from mild (e.g. pharyngitis) to severely invasive (e.g. necrotizing fasciitis). Strain- and serotype-specific differences influence the ability of isolates to cause individual diseases. At the center of this variability is the CovR/S two-component system and the accessory protein RocA. Through incompletely defined mechanisms, CovR/S and RocA repress the expression of more than a dozen immunomodulatory virulence factors. Alleviation of this repression is selected for during invasive infections, leading to the recovery of covR, covS or rocA mutant strains. Here, we investigated how RocA promotes CovR/S activity, identifying that RocA is a pseudokinase that interacts with CovS. Disruption of CovS kinase or phosphatase activities abolishes RocA function, consistent with RocA acting through the modulation of CovS activity. We also identified, in conflict with a previous study, that the RocA regulon includes the secreted protease-encoding gene speB. Finally, we discovered an inverse correlation between the virulence of wild-type, rocA mutant, covS mutant and covR mutant strains during invasive infection and their fitness in an ex vivo upper respiratory tract model. Our data inform on mechanisms that control GAS disease potential and provide an explanation for observed strain- and serotype-specific variability in RocA function.  相似文献   

8.
AtxA, a unique regulatory protein of unknown molecular function, positively controls expression of the major virulence genes of Bacillus anthracis. The 475 amino acid sequence of AtxA reveals DNA binding motifs and regions similar to proteins associated with the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS). We used strains producing native and functional epitope‐tagged AtxA proteins to examine protein–protein interactions in cell lysates and in solutions of purified protein. Co‐affinity purification, non‐denaturing polyacrylamide gel electrophoresis and bis(maleimido)hexane (BMH) cross‐linking experiments revealed AtxA homo‐multimers. Dimers were the most abundant species. BMH cross‐links available cysteines within 13 Å. To localize interaction sites, six AtxA mutants containing distinct Cys→Ser substitutions were tested for multimerization and cross‐linking. All mutants multimerized, but one mutation, C402S, prevented cross‐linking. Thus, BMH uses C402 to make the inter‐molecular bond between AtxA proteins, but C402 is not required for protein–protein interaction. C402 is in a region bearing amino acid similarity to Enzyme IIB proteins of the PTS. The AtxA EIIB motif may function in protein oligomerization. Finally, cultures grown with elevated CO2/bicarbonate exhibited increased AtxA dimer/monomer ratios and increased AtxA activity, relative to cultures grown without added CO2/bicarbonate, suggesting that this host‐associated signal enhances AtxA function by shifting the dimer/monomer equilibrium towards the dimeric state.  相似文献   

9.
Bacterial pathogens commonly show intra‐species variation in virulence factor expression and often this correlates with pathogenic potential. The group A Streptococcus (GAS) produces a small regulatory RNA (sRNA), FasX, which regulates the expression of pili and the thrombolytic agent streptokinase. As GAS serotypes are polymorphic regarding (a) FasX abundance, (b) the fibronectin, collagen, T‐antigen (FCT) region of the genome, which contains the pilus genes (nine different FCT‐types), and (c) the streptokinase‐encoding gene (ska) sequence (two different alleles), we sought to test whether FasX regulates pilus and streptokinase expression in a serotype‐specific manner. Parental, fasX mutant and complemented derivatives of serotype M1 (ska‐2, FCT‐2), M2 (ska‐1, FCT‐6), M6 (ska‐2, FCT‐1) and M28 (ska‐1, FCT‐4) isolates were compared. While FasX reduced pilus expression in each serotype, the molecular basis differed, as FasX bound, and inhibited the translation of, different FCT‐region mRNAs. FasX enhanced streptokinase expression in each serotype, although the degree of regulation varied. Finally, we established that the regulation afforded by FasX enhances GAS virulence, assessed by a model of bacteremia using human plasminogen‐expressing mice. Our data are the first to identify and characterize serotype‐specific regulation by an sRNA in GAS, and to show an sRNA directly contributes to GAS virulence.  相似文献   

10.
Biosynthesis of the nucleotide sugar precursor dTDP‐L‐rhamnose is critical for the viability and virulence of many human pathogenic bacteria, including Streptococcus pyogenes (Group A Streptococcus; GAS), Streptococcus mutans and Mycobacterium tuberculosis. Streptococcal pathogens require dTDP‐L‐rhamnose for the production of structurally similar rhamnose polysaccharides in their cell wall. Via heterologous expression in S. mutans, we confirmed that GAS RmlB and RmlC are critical for dTDP‐L‐rhamnose biosynthesis through their action as dTDP‐glucose‐4,6‐dehydratase and dTDP‐4‐keto‐6‐deoxyglucose‐3,5‐epimerase enzymes respectively. Complementation with GAS RmlB and RmlC containing specific point mutations corroborated the conservation of previous identified catalytic residues. Bio‐layer interferometry was used to identify and confirm inhibitory lead compounds that bind to GAS dTDP‐rhamnose biosynthesis enzymes RmlB, RmlC and GacA. One of the identified compounds, Ri03, inhibited growth of GAS, other rhamnose‐dependent streptococcal pathogens as well as M. tuberculosis with an IC50 of 120–410 µM. Importantly, we confirmed that Ri03 inhibited dTDP‐L‐rhamnose formation in a concentration‐dependent manner through a biochemical assay with recombinant rhamnose biosynthesis enzymes. We therefore conclude that inhibitors of dTDP‐L‐rhamnose biosynthesis, such as Ri03, affect streptococcal and mycobacterial viability and can serve as lead compounds for the development of a new class of antibiotics that targets dTDP‐rhamnose biosynthesis in pathogenic bacteria.  相似文献   

11.
Group A Streptococcus (GAS, Streptococcus pyogenes) is a human‐restricted pathogen with a capacity to both colonize asymptomatically and cause illnesses ranging from pharyngitis to necrotizing fasciitis. An understanding of how and when GAS switches between genetic programs governing these different lifestyles has remained an enduring mystery and likely requires carefully tuned environmental sensors to activate and silence genetic schemes when appropriate. Herein, we describe the relationship between the Control of Virulence (CovRS, CsrRS) two‐component system and the Rgg2/3 quorum‐sensing pathway. We demonstrate that responses of CovRS to the stress signals Mg2+ and a fragment of the antimicrobial peptide LL‐37 result in modulated activity of pheromone signaling of the Rgg2/3 pathway through a means of proteolysis of SHP peptide pheromones. This degradation is mediated by the cytoplasmic endopeptidase PepO, which is the first identified enzymatic silencer of an RRNPP‐type quorum‐sensing pathway. These results suggest that under conditions in which the virulence potential of GAS is elevated (i.e. enhanced virulence gene expression), cellular responses mediated by the Rgg2/3 pathway are abrogated and allow individuals to escape from group behavior. These results also indicate that Rgg2/3 signaling is instead functional during non‐virulent GAS lifestyles.  相似文献   

12.
Mycoplasma genitalium is an emerging human pathogen with the smallest genome found among self‐replicating organisms. M. genitalium presents a complex cytoskeleton with a differentiated protrusion known as the terminal organelle. This polar structure plays a central role in functions essential for the virulence of the microorganism, such as motility and cell‐host adhesion. A well‐conserved Enriched in Aromatic and Glycine Residues motif, the EAGR box, is present in many of the proteins found in the terminal organelle. We determined the crystal structure of the globular domain from M. genitalium MG200 that contains an EAGR box. This structural information is the first at near atomic resolution for the components of the terminal organelle. The structure revealed a dimer stabilized by a compact hydrophobic core that extends throughout the dimer interface. Monomers present a new fold that contains an accurate intra‐subunit symmetry relating two conspicuous hairpins. Some features, such as the domain plasticity and the presence and organization of the intra‐ and inter‐subunit symmetry axes, support a role for the EAGR box in protein–protein interactions. Genetic, biochemical and microcinematography analyses of MG200 variants lacking the EAGR box containing domain confirm the relevant and specific association of this domain with cell motility.  相似文献   

13.
Group A Streptococcus (GAS) is a human pathogen that causes high morbidity and mortality. GAS lacks a gene encoding tyrosine kinase but contains one encoding tyrosine phosphatase (SP‐PTP). Thus, GAS is thought to lack tyrosine phosphorylation, and the physiological significance of SP‐PTP is, therefore, questionable. Here, we demonstrate that SP‐PTP possesses dual phosphatase specificity for Tyr‐ and Ser/Thr‐phosphorylated GAS proteins, such as Ser/Thr kinase (SP‐STK) and the SP‐STK‐phosphorylated CovR and WalR proteins. Phenotypic analysis of GAS mutants lacking SP‐PTP revealed that the phosphatase activity per se positively regulates growth, cell division and the ability to adhere to and invade host cells. Furthermore, A549 human lung cells infected with GAS mutants lacking SP‐PTP displayed increased Ser‐/Thr‐/Tyr‐phosphorylation. SP‐PTP also differentially regulates the expression of ~50% of the total GAS genes, including several virulence genes potentially through the two‐component regulators, CovR, WalR and PTS/HPr regulation of Mga. Although these mutants exhibit attenuated virulence, a GAS mutant overexpressing SP‐PTP is hypervirulent. Our study provides the first definitive evidence for the presence and importance of Tyr‐phosphorylation in GAS and the relevance of SP‐PTP as an important therapeutic target.  相似文献   

14.
Xanthomonas campestris pv. campestris (Xcc) causes black rot, one of the most important diseases of brassica crops worldwide. The type III effector inventory plays important roles in the virulence and pathogenicity of the pathogen. However, little is known about the virulence function(s) of the putative type III effector AvrXccB in Xcc. Here, we investigated the immune suppression ability of AvrXccB and the possible underlying mechanisms. AvrXccB was demonstrated to be secreted in a type III secretion system‐dependent manner. AvrXccB tagged with green fluorescent protein is localized to the plasma membrane in Arabidopsis, and the putative N‐myristoylation motif is essential for its localization. Chemical‐induced expression of AvrXccB suppresses flg22‐triggered callose deposition and the oxidative burst, and promotes the in planta growth of Xcc and Pseudomonas syringae pv. tomato in transgenic Arabidopsis plants. The putative catalytic triad and plasma membrane localization of AvrXccB are required for its immunosuppressive activity. Furthermore, it was demonstrated that AvrXccB interacts with the Arabidopsis S‐adenosyl‐l ‐methionine‐dependent methyltransferases SAM‐MT1 and SAM‐MT2. Interestingly, SAM‐MT1 is not only self‐associated, but also associated with SAM‐MT2 in vivo. SAM‐MT1 and SAM‐MT2 expression is significantly induced upon stimulation of microbe‐associated molecular patterns and bacterial infection. Collectively, these findings indicate that AvrXccB targets a putative methyltransferase complex and suppresses plant immunity.  相似文献   

15.
16.
17.
18.
19.
The Mga virulence regulon: infection where the grass is greener   总被引:3,自引:0,他引:3  
Co-ordinate regulation of virulence gene expression in response to different host environments is central to the success of the group A streptococcus (GAS, Streptococcus pyogenes) as an important human pathogen. Mga represents a ubiquitous stand-alone virulence regulator that controls genes (Mga regulon) whose products are necessary for adherence, internalization and host immune evasion. Mga highly activates a core set of virulence genes, including its own gene, by directly binding to their promoters. Yet, Mga also influences expression of over 10% of the GAS genome, primarily genes and operons involved in metabolism and sugar utilization. Expression of the Mga regulon is influenced by conditions that signify favourable growth conditions, presumably allowing GAS to take advantage of promising new niches in the host. The ability of Mga to respond to growth signals clearly involves regulation of mga expression via global regulatory networks such as RALPs, Rgg/RopB and the catabolite control protein CcpA. However, the presence of predicted PTS regulatory domains (PRDs) within Mga suggests an intriguing model whereby phosphorylation of Mga by the PTS phosphorelay might link growth and sugar utilization with virulence in GAS. As Mga homologues have been found in several important Gram-positive pathogens, the Mga regulon could provide a valuable paradigm for increasing our understanding of global virulence networks in bacteria.  相似文献   

20.
Proteases secreted by pathogens have been shown to be important virulence factors modifying plant immunity, and cysteine proteases have been demonstrated to participate in different pathosystems. However, the virulence functions of the cysteine proteases secreted by Phytophthora parasitica are poorly understood. Using a publicly available genome database, we identified 80 cysteine proteases in P. parasitica, 21 of which were shown to be secreted. Most of the secreted cysteine proteases are conserved among different P. parasitica strains and are induced during infection. The secreted cysteine protease proteins PpCys44/45 (proteases with identical protein sequences) and PpCys69 triggered cell death on the leaves of different Nicotiana spp. A truncated mutant of PpCys44/45 lacking a signal peptide failed to trigger cell death, suggesting that PpCys44/45 functions in the apoplastic space. Analysis of three catalytic site mutants showed that the enzyme activity of PpCys44/45 is required for its ability to trigger cell death. A virus-induced gene silencing assay showed that PpCys44/45 does not induce cell death on NPK1 (Nicotiana Protein Kinase 1)-silenced Nicotiana benthamiana plants, indicating that the cell death phenotype triggered by PpCys44/45 is dependent on NPK1. PpCys44- and PpCys45-deficient double mutants showed decreased virulence, suggesting that PpCys44 and PpCys45 positively promote pathogen virulence during infection. PpCys44 and PpCys45 are important virulence factors of P. parasitica and trigger NPK1-dependent cell death in various Nicotiana spp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号