首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims: To investigate the alkane‐hydroxylating system of isolate SP2B, closely related to Rhodococcus ruber DSM 43338T and uncharacterized so far for its alkane degradation genes. Methods and Results: Although isolate SP2B and reference strain can grow on by‐products from hexane degradation, the type strain R. ruber was unable, unlike SP2B isolate, to use short‐chain alkanes, as assessed by gas chromatography. Using PCR with specific or degenerated primers, inverse PCR and Southern blot, two alkane hydroxylase encoding genes (alkB) were detected in both bacteria, which is in agreement with their alkane range. The first AlkB was related to Rhodococcus AlkB7 enzymes and contains a nonbulky residue at a specific position, suggesting it might be involved in medium‐ and long‐chain alkane oxidation. The second partial alkB gene potentially belongs to alkB5‐type, which was found in bacteria unable to use hexane. Moreover, a partial P450 cytochrome alkane hydroxylase, thought to be responsible for the hexane degradation, was detected only in the isolated strain. Conclusions: Rhodococcus ruber SP2B should prove to be a promising candidate for bioremediation studies of contaminated sites because of its large degradation range of alkanes. Significance and Impact of the Study: This is the first thorough study on R.ruber alkane degradation systems.  相似文献   

2.
One-hundred and fifty different thermophilic bacteria isolated from a volcanic island were screened for detection of an alkane hydroxylase gene using degenerated primers developed to amplify genes related to the Pseudomonas putida and Pseudomonas oleovorans alkane hydroxylases. Ten isolates carrying the alkJ gene were further characterized by 16s rDNA gene sequencing. Nine out of ten isolates were phylogenetically affiliated with Geobacillus species and one isolate with Bacillus species. These isolates were able to grow in liquid cultures with crude oil as the sole carbon source and were found to degrade long chain crude oil alkanes in a range between 46.64% and 87.68%. Results indicated that indigenous thermophilic hydrocarbon degraders of Bacillus and Geobacillus species are of special significance as they could be efficiently used for bioremediation of oil-polluted soil and composting processes.  相似文献   

3.
The alkane hydroxylase system of Pseudomonas oleovorans, which catalyses the initial oxidation of aliphatic substrates, is encoded by three genes. One of the gene products, the alkane hydroxyiase AlkB, is an integral cytoplasmic membrane protein. Induction leads to the synthesis of 1.5–2% AlkB relative to the total cell protein, both in P. oleovorans and in recombinant Escherichia coli DH1. We present a study on the Induction and localization of the alkane hydroxylase in E. coli W3110, which appears to be an interesting host strain because it permits expression levels of AlkB of up to 10–15% of the total cell protein. This expression level had negative effects on cell growth. The phospholipid content of such cells was about threefold higher than that of wild-type W3110. Freeze-fracture electron microscopy showed that induction of the alk genes led to the appearance of membrane vesicles in the cytoplasm; these occurred much more frequently in cells expressing alkB than in the negative control, which contained all of the alk genes except for alkB. Isolation and separation of the membranes of cells expressing alkB by density gradient centrifugation showed the customary cytoplasmic and outer membranes, as well as a low-density membrane fraction. This additional fraction was highly enriched in AlkB, as shown both by SDS-PAGE and enzyme activity measurements. A typical cytoplasmic membrane protein, NADH oxidase, was absent from the low-density membrane fraction, alkB expression in W3110 changed the composition of the phospholipid headgroup in the membrane, as well as the fatty acid composition of the membrane. The major changes occurred in the unsaturated fatty acids: C16:1 and C18:1 increased at the expense of C17:0cyc and C19:0cyc*  相似文献   

4.
5.
Aims: Investigation of the alkane‐degrading properties of Dietzia sp. H0B, one of the isolated Corynebacterineae strains that became dominant after the Prestige oil spill. Methods and Results: Using molecular and chemical analyses, the alkane‐degrading properties of strain Dietzia sp. H0B were analysed. This Grampositive isolate was able to grow on n‐alkanes ranging from C12 to C38 and branched alkanes (pristane and phytane). 8‐Hexadecene was detected as an intermediate of hexadecane degradation by Dietzia H0B, suggesting a novel alkane‐degrading pathway in this strain. Three putative alkane hydroxylase genes (one alkB homologue and two CYP153 gene homologues of cytochrome P450 family) were PCR‐amplified from Dietzia H0B and differed from previously known hydroxylase genes, which might be related to the novel degrading activity observed on Dietzia H0B. The alkane degradation activity and the alkB and CYP153 gene expression were observed constitutively regardless of the presence of the substrate, suggesting additional, novel pathways for alkane degradation. Conclusions: The results from this study suggest novel alkane‐degrading pathways in Dietzia H0B and a genetic background coding for two different putative oil‐degrading enzymes, which is mostly unexplored and worth to be subject of further functional analysis. Significance and Impact of the Study: This study increases the scarce information available about the genetic background of alkane degradation in genus Dietzia and suggests new pathways and novel expression mechanisms of alkane degradation.  相似文献   

6.
Understanding of microbial metal reduction is based almost solely on studies of Gram‐negative organisms. In this study, we focus on Desulfotomaculum reducens MI‐1, a Gram‐positive metal reducer whose genome lacks genes with similarity to any characterized metal reductase. Using non‐denaturing separations and mass spectrometry identification, in combination with a colorimetric screen for chelated Fe(III)‐NTA reduction with NADH as electron donor, we have identified proteins from the D. reducens proteome not previously characterized as iron reductases. Their function was confirmed by heterologous expression in Escherichia coli. Furthermore, we show that these proteins have the capability to reduce soluble Cr(VI) and U(VI) with NADH as electron donor. The proteins identified are NADH : flavin oxidoreductase (Dred_2421) and a protein complex composed of oxidoreductase flavin adenine dinucleotide/NAD(P)‐binding subunit (Dred_1685) and dihydroorotate dehydrogenase 1B (Dred_1686). Dred_2421 was identified in the soluble proteome and is predicted to be a cytoplasmic protein. Dred_1685 and Dred_1686 were identified in both the soluble as well as the insoluble protein fraction, suggesting a type of membrane association, although PSORTb predicts both proteins are cytoplasmic. This study is the first functional proteomic analysis of D. reducens and one of the first analyses of metal and radionuclide reduction in an environmentally relevant Gram‐positive bacterium.  相似文献   

7.
8.
Screening for alkane hydroxylase genes (alkB) was performed in thermophilic aerobic bacteria of the genus Geobacillus. Total DNAs were isolated from the biomass of 11 strains grown on a mixture of saturated C10–C20 hydrocarbons. Fragments of alkB genes were amplified by PCR with degenerate oligonucleotide primers, and the PCR products were cloned and sequenced. For the first time, a set of alkB gene homologs was detected in the genomes of thermophilic bacteria. The strains each contained three to six homologs, of which only two were common for all of the strains. Phylogenetic analysis of the nucleotide sequences and the deduced amino acid sequences showed that six of the variants revealed in Geobacillus were closely related to alkB4, alkB3, and alkB2, found in Rhodococcus erythropolis strains NRRL B-16531 and Q15. All variants of alkB sequences were unique. Analysis of the GC composition showed that the Geobacillus alkB homologs are closer to Rhodococcus than to Geobacillus chromosomal DNA. It was assumed that the alkB genes were introduced in the Geobacillus genome via interspecific horizontal transfer and that Rhodococcus or other representatives of Actinobacteria served as donors. Analysis of the codon usage in the fragments of alkB genes confirmed the suggestion that the pool of these genes is common to the majority of Gram-positive and certain Gram-negative bacteria. The formation of a set of several alkB homologs in a genome of a particular microorganism may result from free gene exchange within this pool.  相似文献   

9.
The sugar nucleotide dTDP‐L‐rhamnose is critical for the biosynthesis of the Group A Carbohydrate, the molecular signature and virulence determinant of the human pathogen Group A Streptococcus (GAS). The final step of the four‐step dTDP‐L‐rhamnose biosynthesis pathway is catalyzed by dTDP‐4‐dehydrorhamnose reductases (RmlD). RmlD from the Gram‐negative bacterium Salmonella is the only structurally characterized family member and requires metal‐dependent homo‐dimerization for enzymatic activity. Using a biochemical and structural biology approach, we demonstrate that the only RmlD homologue from GAS, previously renamed GacA, functions in a novel monomeric manner. Sequence analysis of 213 Gram‐negative and Gram‐positive RmlD homologues predicts that enzymes from all Gram‐positive species lack a dimerization motif and function as monomers. The enzymatic function of GacA was confirmed through heterologous expression of gacA in a S. mutans rmlD knockout, which restored attenuated growth and aberrant cell division. Finally, analysis of a saturated mutant GAS library using Tn‐sequencing and generation of a conditional‐expression mutant identified gacA as an essential gene for GAS. In conclusion, GacA is an essential monomeric enzyme in GAS and representative of monomeric RmlD enzymes in Gram‐positive bacteria and a subset of Gram‐negative bacteria. These results will help future screens for novel inhibitors of dTDP‐L‐rhamnose biosynthesis.  相似文献   

10.
Human galectin‐3 (hGal‐3) is a mammalian lectin involved in regulation of RNA splicing, apoptosis, cell differentiation, and proliferation. Multimerized extracellular hGal‐3 is thought to crosslink cells by binding to glycoproteins and glycosylated cancer antigens on the cell surface or extracellular matrix. Fluorescence spectroscopy and circular dichroism were used to study the interaction of hGal‐3 with two anticancer agents: bohemine and Zn porphyrin (ZnTPPS4). The dissociation constant (kD) for binding of bohemine with hGal‐3 was kD 0.23±0.05 μM. The hyperbolic titration curve indicated the presence of a single bohemine binding site. The binding of ZnTPPS4 to hGal‐3 (with and without lactose) is of high affinity having kD=0.18–0.20 μM and is not inhibited by lactose, indicating that ZnTPPS4 and carbohydrate bind different sites. Circular dichroism spectra of the hGal‐3 complexes suggested that the binding of the hydrophobic compounds changed the hGal‐3 secondary structure. In summary, we show that two compounds with anticancer activity, bohemine and ZnTPPS4, have high affinity for hGal‐3 at a site that is distinct from its carbohydrate site. Since hGal‐3 binds to several carbohydrate cancer antigens, the results suggest that it may have utility in the targeted delivery of drugs for cancer.  相似文献   

11.
Activation of precursor 25‐hydroxyvitamin D3 (25D) to hormonal 1,25‐dihydroxyvitamin D3 (1,25D) is a pivotal step in vitamin D physiology, catalysed by the enzyme 25‐hydroxyvitamin D‐1α‐hydroxylase (1α‐hydroxylase). To establish new models for assessing the physiological importance of the 1α‐hydroxylase‐25D‐axis, we used Danio rerio (zebrafish) to characterize expression and biological activity of the gene for 1α‐hydroxylase (cyp27b1). Treatment of day 5 zebrafish larvae with inactive 25D (5–150 nM) or active 1,25D (0.1–10 nM) induced dose responsive expression (15–95‐fold) of the vitamin D‐target gene cyp24a1 relative to larvae treated with vehicle, suggesting the presence of Cyp27b1 activity. A full‐length zebrafish cyp27b1 cDNA was then generated using RACE and RT‐PCR methods. Sequencing of the resulting clone revealed an open reading frame encoding a protein of 505 amino acids with 54% identity to human CYP27B1. Transfection of a cyp27b1 expression vector into HKC‐8, a human kidney proximal tubular epithelial cell line, enhanced intracrine metabolism of 25D to 1,25D resulting in greater than twofold induction of CYP24A1 mRNA expression and a 25‐fold increase in 1,25D production compared to empty vector. These data indicate that we have cloned a functional zebrafish CYP27B1, representing a phylogenetically distant branch from mammals of this key enzyme in vitamin D metabolism. Further analysis of cyp27b1 expression and activity in zebrafish may provide new perspectives on the biological importance of 25D metabolism. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
13.
Conversion of D‐xylose to xylitol by Candida boidinii NRRL Y‐17213 was studied under anaerobic and oxygen limited conditions by varying the oxygen transfer coefficient kLa. Shake flask experiments were used to provide the preliminary information required to perform experiments in a bioreactor. The yeast did not grow under fully anaerobic conditions, but anaerobic formations of xylitol, ethanol, ribitol, and glycerol were observed as well as D‐xylose assimilation of 11 %. In shake flasks, with an initial D‐xylose concentration of 50 g/L, an increase in kLa from 8 to 46 h–1 resulted in a faster growth, higher rate of substrate uptake and lower yields of products. The highest xylitol productivity (0.052 g/L h) was attained at kLa = 8 h–1. At kLa = 46 h–1, 98.6 % of D‐xylose was consumed and mainly converted to biomass. Using 130 g/L D‐xylose, kLa was varied in the fermenter from 26 to 78 h–1. The percentage of consumed D‐xylose increased from 31 % at kLa = 26 h–1 to 93–94 % at all other aeration levels. Biomass yield increased with kLa, whereas ethanol, ribitol, and glycerol yields exhibited an opposite dependence on the oxygenation level. The most favorable oxygen transfer coefficient for xylitol formation, in the fermenter, was kLa = 47 h–1 when its concentration (57.5 g/L) surpassed ethanol accumulation by 3.6‐fold, and the glycerol plus ribitol by 10‐fold. Concurrently, xylitol yield and productivity reached 0.45 g/g and 0.26 g/L h, respectively. The volumetric xylitol productivity was affected more by changes in the aeration than the corresponding yield.  相似文献   

14.
The inland silverside, Menidia beryllina (Cope), is an annual zooplanktivore that occurs in estuarine and freshwater habitats along the Atlantic and Gulf of Mexico coasts and drainages of the United States. Experiments were conducted at 25 ± 1°C to quantify the relationship between mean dry weight (WD) and rates of energy gain from food consumption (C), and energy losses as a result of respiration (R) and ammonia excretion (E) during routine activity and feeding by groups of fish. The absorption efficiency of ingested food energy (A) was also quantified. Rates of C, E, and R increased with WD by factors (b in the equation y = aWDb) equal to 0.462, 0.667, and 0.784, respectively. Mean (±SE) rates of energy loss during feeding were 1.6 ± 0.1 (R) and 3.4 ± 0.6 (E) times greater than those for unfed fish. Absorption efficiency was independent of WD and estimated to be 89% of C. From these measurements, the surplus energy available for growth and activity (G) and growth efficiency (K1) were estimated. Over the range in sizes of juveniles and adults (5–500 mg WD), predicted G and K1 values decreased from 7.42 to 0.20 J mg fish?1 day?1 and 63 to 21%, respectively. Measured and predicted bioenergetic parameters are discussed within an ecological context for a northern population of this species.  相似文献   

15.
Static and dynamic light-scattering measurements are reported on zinc-insulin at room temperature (21 ± l°C) and pH = 6.88 in 0.1M NaCl aqueous solution. The experiments were performed at very low concentration, in the range 0.12 × 10?4 to 0.90 × 10?4 g cm?3. Within experimental error, we find no evidence for a critical micellar concentration in this system. The aggregation phenomenon starts immediately after preparation of the solutions, and takes several days to come to stable equilibrium. The concentration dependence of the diffusion coefficients, D z, = Do (1 — kDC), is negative, and kD was observed to decrease as a function of time, while the aggregate size was found to increase. The equivalent concentration coefficient, ?2BM W, obtained from static light scattering, showed a similar behavior, and, within experimental error, was found to be numerically equal to kD. From the relation found between the diffusion coefficient at infinite dilution and the molecular weight of the aggregates, log D0 = ?0.240 log M w ? 5.077, we deduce that the insulin aggregates are compact structures with a characteristic radius of 0.71 Å/(dalton)1/3, surrounded by a hydration layer of a thickness of 8.0 Å. The equilibrium aggregation number is approximately 10.  相似文献   

16.
The vitamin D3 receptor (VDR) is present in all microenvironments of the breast, yet it is hypothesized to signal through the epithelium to regulate hormone induced growth and differentiation. However, the influence or contribution of the other microenvironments within the breast that express VDR, like the breast adipose tissue, are yet to be investigated. We hypothesized that the breast adipocytes express the signaling components necessary to participate in vitamin D3 synthesis and signaling via VDR, modulating ductal epithelial cell growth and differentiation. We utilized human primary breast adipocytes and VDR wild type (WT) and knockout (KO) mice to address whether breast adipocytes participate in vitamin D3‐induced growth regulation of the ductal epithelium. We report in this study that breast primary adipocytes express VDR, CYP27B1 (1α‐hydroxylase, 1α‐OHase), the enzyme that generates the biologically active VDR ligand, 1α,25‐dihydroxyvitamin D3 (1,25D3), and CYP24 (24‐hydroxylase, 24‐OHase), a VDR‐1,25D3 induced target gene. Furthermore, the breast adipocytes participate in bioactivating 25‐hydroxyvitamin D3 (25D3) to the active ligand, 1,25D3, and secreting it to the surrounding microenvironment. In support of this concept, we report that purified mammary ductal epithelial fragments (organoids) from VDR KO mice, co‐cultured with WT breast adipocytes, were growth inhibited upon treatment with 25D3 or 1,25D3 compared to vehicle alone. Collectively, these results demonstrate that breast adipocytes bioactivate 25D3 to 1,25D3, signal via VDR within the adipocytes, and release an inhibitory factor that regulates ductal epithelial cell growth, suggesting that breast adipose tissue contributes to vitamin D3‐induced growth regulation of ductal epithelium. J. Cell. Biochem. 112: 3393–3405, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

17.
We collected 729 Hypanus guttatus from the northern coast of the state of Rio Grande do Norte (RN), of which 196 were used to estimate age and growth. Ninety-five were male (12.7 to 57.0 cm disc width; WD) and 101 were female (13.0 to 88.5 cm WD); females were significantly larger than males. Cross sections of vertebrae showed band-pairs ranging from 0 to > 14 in females and from 0 to 9 in males. New-borns presented an opaque edge at birth in vertebrae without a birthmark. The average percentage of error (APE; %E) for the entire sample provided evidence that ages were repeatable. The mean monthly marginal increment (IM) indicates annual band-pair formation from August to November. The annual cycle model for one band-pair deposition provided the best fit to data based on the AIC, with peaks between August and October, similar to that found in the IM analysis, suggesting an annual formation pattern. A multi-model approach that included four models based on the observed mean WD at age indicated a modified von Bertalanffy growth model as the best for describing the species growth: W0 (WD at birth) = 14.6 cm for both sexes; females W = 98.61 cm (95% CI = 87.34–114.61 cm); k = 0.112 year−1 (CI = 0.086–0.148 year−1); males W = 60.22 cm (CI = 55.66–65.35 cm); k = 0.219 year−1 (CI = 0.185–0.276 year−1). The age-at-maturity in males and females is 5 years and 7 years, respectively. The age composition shows that most (84%) specimens were aged 0 to 2 years. The information provided here is essential for analytical assessments of H. guttatus, which is subject to significant fishing pressure mainly on new-borns and juveniles.  相似文献   

18.
This work describes the study of the chemical composition and bioactivity of the essential oils (EOs) of the different organs (leaves, flowers, stems and roots) from Eruca vesicaria. According to the GC and GC/MS analysis, all the EOs were dominated by erucin (4‐methylthiobutyl isothiocyanate) with a percentage ranging from 17.9 % (leaves) to 98.5 % (roots). The isolated EOs were evaluated for their antioxidant (DPPH, ABTS and β‐carotene/linoleic acid), antibacterial and inhibitory property against α‐amylase and α‐glucosidase. Most EOs exhibited an interesting α‐glucosidase and α‐amylase inhibitory potential. The roots essential oil was found to be the most active with IC50 values of 0.80±0.06 and 0.11±0.01 μg mL?1, respectively. The essential oil of roots exhibited the highest antioxidant activity (DPPH, PI=92.76±0.01 %; ABTS, PI=78.87±0.19; and β‐carotene, PI=56.1±0.01 %). The isolated oils were also tested for their antibacterial activity against two Gram‐positive and three Gram‐negative bacteria. Moderate results have been noted by comparison with Gentamicin used as positive control.  相似文献   

19.
The cis/trans interconversion of Glt-Ala-Ala-Pro-Phe-4-nitroanilide and Glt-Ala-Gly-Pro-Phe-4-nitroanilide was studied both enzymatically and nonenzymatically by measuring kinetic β-deuterium isotope effects. The hydrogen atom at the α-carbon atom of the Xaa residue within the Xaa-Pro moiety was substituted by deuterium. In the nonenzymatic case the transition state of rotation is reflected by kH/kD > 1. When catalysed by 17 kDa PPIase the same bond rotation is characterized by kH/kD < 1. This suggests a covalent mechanism of catalysis which involves an approximately tetravalent carbon of the prolyl imidic bond for the transition state of reaction.  相似文献   

20.
It is demonstrated that cyanobacteria (both azotrophic and non‐azotrophic) contain heme b oxidoreductases that can convert chlorite to chloride and molecular oxygen (incorrectly denominated chlorite ‘dismutase’, Cld). Beside the water‐splitting manganese complex of photosystem II, this metalloenzyme is the second known enzyme that catalyses the formation of a covalent oxygen–oxygen bond. All cyanobacterial Clds have a truncated N‐terminus and are dimeric (i.e. clade 2) proteins. As model protein, Cld from Cyanothece sp. PCC7425 (CCld) was recombinantly produced in Escherichia coli and shown to efficiently degrade chlorite with an activity optimum at pH 5.0 [kcat 1144 ± 23.8 s?1, KM 162 ± 10.0 μM, catalytic efficiency (7.1 ± 0.6) × 106 M?1 s?1]. The resting ferric high‐spin axially symmetric heme enzyme has a standard reduction potential of the Fe(III)/Fe(II) couple of ?126 ± 1.9 mV at pH 7.0. Cyanide mediates the formation of a low‐spin complex with kon = (1.6 ± 0.1) × 105 M?1 s?1 and koff = 1.4 ± 2.9 s?1 (KD ~ 8.6 μM). Both, thermal and chemical unfolding follows a non‐two‐state unfolding pathway with the first transition being related to the release of the prosthetic group. The obtained data are discussed with respect to known structure–function relationships of Clds. We ask for the physiological substrate and putative function of these O2‐producing proteins in (nitrogen‐fixing) cyanobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号