首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The underlined effects of diallyl sulfide (DAS) against CCL4‐induced oxidative, inflammatory, and apoptotic acute hepatic damage were assessed. Administration of DAS (50, 100, and 200 mg/kg) along with CCL 4 effectively mitigated serum aspartate aminotransferase, alanine aminotransferase activities, MDA, TNF‐α, IL‐1β, and MCP‐1 levels, as well as significantly restored HO‐1, GSH levels and SOD activity in liver tissues compared with those in rats treated with CCL 4. Moreover, DAS inhibited CCL 4‐induced increase of liver NF‐κB (p65), Bax, p38 MAPK, and JNK protein expression. In addition, DAS accelerated protein expression of Nrf2 and Bcl‐2. The hepatoprotective properties of DAS were further confirmed by the reduced severity of hepatic damage as demonstrated by histopathological findings. In conclusion, DAS achieved its protective potential against CCL4‐induced hepatotoxicity through antiapoptotic activity, as well as the synchronized modulation of NF‐κB and Nrf2 for the favor of antioxidant/anti‐inflammatory effects via suppression of the upstream stress‐activated MAPKs pathways.  相似文献   

2.
Obesity often leads to obesity‐related cardiac hypertrophy (ORCH), which is suppressed by zinc‐induced inactivation of p38 mitogen‐activated protein kinase (p38 MAPK). In this study, we investigated the mechanisms by which zinc inactivates p38 MAPK to prevent ORCH. Mice (4‐week old) were fed either high fat diet (HFD, 60% kcal fat) or normal diet (ND, 10% kcal fat) containing variable amounts of zinc (deficiency, normal and supplement) for 3 and 6 months. P38 MAPK siRNA and the p38 MAPK inhibitor SB203580 were used to suppress p38 MAPK activity in vitro and in vivo, respectively. HFD activated p38 MAPK and increased expression of B‐cell lymphoma/CLL 10 (BCL10) and caspase recruitment domain family member 9 (CARD9). These responses were enhanced by zinc deficiency and attenuated by zinc supplement. Administration of SB203580 to HFD mice or specific siRNA in palmitate‐treated cardiomyocytes eliminated the HFD and zinc deficiency activation of p38 MAPK, but did not significantly impact the expression of BCL10 and CARD9. In cultured cardiomyocytes, inhibition of BCL10 expression by siRNA prevented palmitate‐induced increased p38 MAPK activation and atrial natriuretic peptide (ANP) expression. In contrast, inhibition of p38 MAPK prevented ANP expression, but did not affect BCL10 expression. Deletion of metallothionein abolished the protective effect of zinc on palmitate‐induced up‐regulation of BCL10 and phospho‐p38 MAPK. HFD and zinc deficiency synergistically induce ORCH by increasing oxidative stress‐mediated activation of BCL10/CARD9/p38 MAPK signalling. Zinc supplement ameliorates ORCH through activation of metallothionein to repress oxidative stress‐activated BCL10 expression and p38 MAPK activation.  相似文献   

3.
4.
5.
Anoxygenic photosynthetic proteobacteria exhibit various light responses, including changing levels of expression of photosynthesis genes. However, the underlying mechanisms are largely unknown. We show that expression of the puf and puc operons encoding structural proteins of the photosynthetic complexes is strongly repressed by blue light under semi-aerobic growth in Rhodobacter sphaeroides but not in the related species Rhodobacter capsulatus. At very low oxygen tension, puf and puc expression is independent of blue light in both species. Photosynthetic electron transport does not mediate the blue light repression, implying the existence of specific photoreceptors. Here, we show that the flavoprotein AppA is likely to act as the photoreceptor for blue light-dependent repression during continuous illumination. The FAD cofactor of AppA is essential for the blue light-dependent sensory transduction of this response. AppA, which is present in R. sphaeroides but not in R. capsulatus, is known to participate in the redox-dependent control of photosynthesis gene expression. Thus, AppA is the first example of a protein with dual sensing capabilities that integrates both redox and light signals.  相似文献   

6.

Objective:

Obesity is a prominent component of metabolic syndrome and a major risk factor for renal disease. The aim of this study was to explore the effect of cross‐talk between peroxisome proliferator‐activated receptor (PPAR)δ and p38 mitogen‐activated protein kinase (p38 MAPK) on obesity‐related glomerulopathy.

Design and Methods:

Male Wistar rats were randomly assigned to standard laboratory chow or a high‐fat diet for 32 weeks. Glomerular mesangial cells HBZY‐1 and mature differentiation 3T3‐L1 cells were cocultured and were transfected with PPARδ‐expressing vectors or treated with agonist or inhibitor of PPARδ or p38 MAPK.

Results:

Rats on a high‐fat diet showed typical characteristics of metabolic syndrome including obesity, dyslipidemia, insulin resistance, and hypertension. Rats on a high‐fat diet also had significant glomerular hypertrophy and extracellular matrix accumulation, which were accompanied by increased p38 MAPK phosphorylation and decreased PPARδ expression in the kidney tissue. The roles of p38 MAPK and PPARδ in a coculture system of mesangial cells and mature differentiation 3T3‐L1 cells were further explored. PPARδ suppression promoted laminin and type IV collagen secretion through p38 MAPK phosphorylation in mesangial cells, whereas PPARδ overexpression or PPARδ agonist attenuated phosphorylation of p38 MAPK and laminin and type IV collagen secretion.

Conclusions:

The characteristics of obesity‐related glomerulopathy, which might be partly caused by PPARδ suppression‐induced p38 MAPK activation and laminin and type IV collagen secretion was demonstrated.  相似文献   

7.
Transforming growth factor-alpha (TGFalpha) and fibroblast growth factor-7 (FGF7) exhibit distinct expression patterns in the mammary gland. Both factors signal through mitogen-activated kinase/extracellular regulated kinase-1,2 (MAPK(ERK1,2)); however, their unique and/or combined contributions to mammary morphogenesis have not been examined. In ex vivo mammary explants, we show that a sustained activation of MAPK(ERK1,2) for 1 h, induced by TGFalpha, was necessary and sufficient to initiate branching morphogenesis, whereas a transient activation (15 min) of MAPK(ERK1,2), induced by FGF7, led to growth without branching. Unlike TGFalpha, FGF7 promoted sustained proliferation as well as ectopic localization of, and increase in, keratin-6 expressing cells. The response of the explants to FGF10 was similar to that to FGF7. Simultaneous stimulation by FGF7 and TGFalpha indicated that the FGF7-induced MAPK(ERK1,2) signaling and associated phenotypes were dominant: FGF7 may prevent branching by suppression of two necessary TGFalpha-induced morphogenetic effectors, matrix metalloproteinase-3 (MMP-3/stromelysin-1), and fibronectin. Our findings indicate that expression of morphogenetic effectors, proliferation, and cell-type decisions during mammary organoid morphogenesis are intimately dependent on the duration of activation of MAPK(ERK1,2) activation.  相似文献   

8.
9.
Cotyledon opening is a key morphological change that occurs in seedlings during de-etiolation. Brassinosteroids (BRs) inhibit the opening of cotyledons in darkness while light promotes cotyledon opening. The molecular regulation of the interplay between light and BR to regulate cotyledon opening is not well understood. Here, we show the B-box protein BBX32 negatively regulates light signaling and promotes BR signaling to inhibit cotyledon opening in Arabidopsis (Arabidopsis thaliana). BBX32 is highly expressed in the cotyledons of seedlings during de-etiolation. bbx32 and 35S:BBX32 seedlings exhibit enhanced and reduced cotyledon opening, respectively, in response to both light and brassinazole treatment in dark, suggesting that BBX32 mediates cotyledon opening through both light and BR signaling pathways. BBX32 expression is induced by exogenous BR and is upregulated in bzr1-1D (BRASSINAZOLE RESISTANT1-1D). Our in vitro and in vivo interaction studies suggest that BBX32 physically interacts with BZR1. Further, we found that PHYTOCHROME-INTERACTING FACTOR 3 (PIF3) interacts with BBX32 and promotes BR-mediated cotyledon closure. BBX32, BZR1, and PIF3 regulate the expression of common target genes that modulate the opening and closing of cotyledons. Our work suggests BBX32 integrates light and BR signals to regulate cotyledon opening during de-etiolation.  相似文献   

10.
Mammalian target of rapamycin (mTOR) is a key protein kinase that regulates cell growth, metabolism, and autophagy to maintain cellular homeostasis. Its activity is inhibited by adverse conditions, including nutrient limitation, hypoxia, and DNA damage. In this study, we demonstrate that Che‐1, a RNA polymerase II‐binding protein activated by the DNA damage response, inhibits mTOR activity in response to stress conditions. We found that, under stress, Che‐1 induces the expression of two important mTOR inhibitors, Redd1 and Deptor, and that this activity is required for sustaining stress‐induced autophagy. Strikingly, Che‐1 expression correlates with the progression of multiple myeloma and is required for cell growth and survival, a malignancy characterized by high autophagy response.  相似文献   

11.
12.
A wide variety of cell death mechanisms, such as ferroptosis, have been proposed in mammalian cells, and the classification of cell death attracts global attention because each type of cell death has the potential to play causative roles in specific diseases. However, the precise molecular mechanisms leading to cell death are poorly understood, particularly in ferroptosis. Here, we show that continuous severe cold stress induces ferroptosis and the ASK1‐p38 MAPK pathway in multiple cell lines. The activation of the ASK1‐p38 pathway is mediated by critical determinants of ferroptosis: MEK activity, iron ions, and lipid peroxide. The chemical compound erastin, a potent ferroptosis inducer, also activates the ASK1‐p38 axis downstream of lipid peroxide accumulation and leads to ASK1‐dependent cell death in a cell type‐specific manner. These lines of evidence provide mechanistic insight into ferroptosis, a type of regulated necrosis.  相似文献   

13.
14.
Enhanced oxidative stress is a common feature of liver diseases and contributes to chronic liver disease (CLD) progression by inducing fibrogenesis during liver regeneration. Peroxidation products of cholesterol metabolism, named oxysterols, are new and reliable markers of oxidative stress in vivo. Patients affected by CLDs present high plasma levels of oxysterols, raising the question of the origin and biological relevance of these compounds in the pathophysiology of chronic liver damage. The aim of this study was to examine the molecular basis of the biological effects of oxysterols on liver‐derived cells, HepG2 and Huh7. Cells were treated with different concentrations (10?9 to 10?5 M) of 7‐ketocholesterol used as a reference, and 5,6‐secosterol, a recently discovered oxysterol. FACS investigations, caspase‐3 activation, and Sytox Green immunofluorescent assay showed that pathological concentrations of oxysterols induced necrosis (30–50%) after 48 h of treatment. The two analyzed compounds displayed a similar, but not identical, behavior. In fact, 5,6‐secosterol, but not 7‐ketocholesterol, induced cell senescence. Notably, low concentrations of 5,6‐secosterol caused a sustained activation of ERK1/2, inducing cell proliferation, this unexpected behavior should be better characterized by further studies. Since enhanced oxidative stress is known to worsen liver chronic hepatitis and frequently results in overall decreased cellular survival, our data suggest the important and different role oxysterols may have in interfering with physiological liver tissue regeneration in injured human liver. Antioxidant treatment may provide a highly specific and effective mean to counteract the common consequences of oxidative stress on chronic hepatitis, such as fibrosis/cirrhosis and liver failure. J. Cell. Physiol. 222: 586–595, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
16.
The neurogenic niche within the subgranular zone (SGZ) of the dentate gyrus is a source of new neurons throughout life. Interestingly, SGZ proliferative capacity is regulated by both physiological and pathophysiological conditions. One outstanding question involves the molecular mechanisms that regulate both basal and inducible adult neurogenesis. Here, we examined the role of the MAPK‐regulated kinases, mitogen‐ and stress‐activated kinase (MSK)1 and MSK2. as regulators of dentate gyrus SGZ progenitor cell proliferation and neurogenesis. Under basal conditions, MSK1/2 null mice exhibited significantly reduced progenitor cell proliferation capacity and a corollary reduction in the number of doublecortin (DCX)‐positive immature neurons. Strikingly, seizure‐induced progenitor proliferation was totally blocked in MSK1/2 null mice. This blunting of cell proliferation in MSK1/2 null mice was partially reversed by forskolin infusion, indicating that the inducible proliferative capacity of the progenitor cell population was intact. Furthermore, in MSK1/2 null mice, DCX‐positive immature neurons exhibited reduced neurite arborization. Together, these data reveal a critical role for MSK1/2 as regulators of both basal and activity‐dependent progenitor cell proliferation and morphological maturation in the SGZ.  相似文献   

17.
18.
19.
Glutamate decarboxylase (GAD) catalyses decarboxylation of glutamate to gamma-aminobutyrate (GABA) in a metabolic pathway connected to citrate cycle and known as GABA shunt. The gene (gad) was disrupted in Trichoderma atroviride CCM F-534 and viable mutants were characterized. Two of them were found to arise by homologous recombination and were devoid of both GAD activity and GABA. Mutants grew slower as compared to the wild type (F534). In the submerged culture, mutants developed less CO2 and consumed less O2 than the F534 without changing their respiratory quotients. Hyphae of mutants were more ramified than those of F534. Their ramification, in contrast to F534, was not increased by cyclosporin A, a drug causing hyphae ramification of several fungi and which is a calcineurin/cyclophilin inhibitor, or by FK506. Rapamycin, which is a cyclophilin but not calcineurin inhibitor, had a different effect on hyphae ramification in F534 and mutants. To examine the presence of GABA receptors in the fungus the effect of mammalian GABA-receptor modulators, such as bicuculline, gabapentin or carbamazepine on fungal morphology were investigated. Conidia of mutants germinated in a multipolar manner more frequently (up to 80 %) than those of F534. This trait was modified with cyclosporine A, FK506 and GABA receptor modulators in a different manner. Transport of chlorides, an intimate feature of GABA-regulated receptors/channels in animal cells, was measured in vegetative mycelia by means 36Cl? uptake. It was significantly reduced in gad mutants. The results suggest that T. atroviride possesses a signalling pathway that involves GABA, putative GABA receptor(s), calcineurin, target of rapamycin and chloride transporter(s) to regulate physiological functions.  相似文献   

20.
Low‐grade astrocytomas (LGAs) are the most common type of brain tumor in children. Until recently, very little was known about the underlying biology and molecular genetics of these tumors. However, within the past year a number of studies have shown that the MAPK pathway is constitutively activated in a high proportion of LGAs. Several genetic aberrations which generate this deregulation of the MAPK pathway have been identified, most notably gene fusions between KIAA1549 and BRAF. In this review we summarize these findings, discuss how these gene fusions may arise and consider possible implications for diagnosis and treatment. J. Cell. Physiol. 222: 509–514, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号