首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Over the past few decades seed physiology research has contributed to many important scientific discoveries and has provided valuable tools for the production of high quality seeds. An important instrument for this type of research is the accurate quantification of germination; however gathering cumulative germination data is a very laborious task that is often prohibitive to the execution of large experiments. In this paper we present the germinator package: a simple, highly cost‐efficient and flexible procedure for high‐throughput automatic scoring and evaluation of germination that can be implemented without the use of complex robotics. The germinator package contains three modules: (i) design of experimental setup with various options to replicate and randomize samples; (ii) automatic scoring of germination based on the color contrast between the protruding radicle and seed coat on a single image; and (iii) curve fitting of cumulative germination data and the extraction, recap and visualization of the various germination parameters. The curve‐fitting module enables analysis of general cumulative germination data and can be used for all plant species. We show that the automatic scoring system works for Arabidopsis thaliana and Brassica spp. seeds, but is likely to be applicable to other species, as well. In this paper we show the accuracy, reproducibility and flexibility of the germinator package. We have successfully applied it to evaluate natural variation for salt tolerance in a large population of recombinant inbred lines and were able to identify several quantitative trait loci for salt tolerance. germinator is a low‐cost package that allows the monitoring of several thousands of germination tests, several times a day by a single person.  相似文献   

2.
Increasingly, data on shape are analysed in combination with molecular genetic or ecological information, so that tools for geometric morphometric analysis are required. Morphometric studies most often use the arrangements of morphological landmarks as the data source and extract shape information from them by Procrustes superimposition. The MorphoJ software combines this approach with a wide range of methods for shape analysis in different biological contexts. The program offers an integrated and user-friendly environment for standard multivariate analyses such as principal components, discriminant analysis and multivariate regression as well as specialized applications including phylogenetics, quantitative genetics and analyses of modularity in shape data. MorphoJ is written in Java and versions for the Windows, Macintosh and Unix/Linux platforms are freely available from http://www.flywings.org.uk/MorphoJ_page.htm.  相似文献   

3.
ModEco: an integrated software package for ecological niche modeling   总被引:2,自引:0,他引:2  
Qinghua Guo  Yu Liu 《Ecography》2010,33(4):637-642
ModEco is a software package for ecological niche modeling. It integrates a range of niche modeling methods within a geographical information system. ModEco provides a user friendly platform that enables users to explore, analyze, and model species distribution data with relative ease. ModEco has several unique features: 1) it deals with different types of ecological observation data, such as presence and absence data, presence‐only data, and abundance data; 2) it provides a range of models when dealing with presence‐only data, such as presence‐only models, pseudo‐absence models, background vs presence data models, and ensemble models; and 3) it includes relatively comprehensive tools for data visualization, feature selection, and accuracy assessment.  相似文献   

4.
Suppression subtractive hybridization (SSH) is a widely used technique for the identification of differentially expressed genes. SSH as well as other types of sequencing projects generate large amounts of anonymous sequences. SSHSuite automates the handling and storage of these sequences and enables identification through similarity searches. SSHSuite also offers analysis tools for the retrieval and comparison of the resulting similarity data. SSHSuite consists of four programs: SSHHandler, SSHOverview, SSHAnalysis, and SSHCompare.  相似文献   

5.
Various enzyme reactors and online enzyme digestion strategies have been developed in recent years. These reactors greatly enhanced the detection sensitivity and proteome coverage in qualitative proteomics. However, these devices have higher rates of miscleavage in protein digestion. Therefore, we investigated the effect of online enzyme digestion on the quantification accuracy of quantitative proteomics using chemical or metabolic isotope labeling approaches. The incomplete digestion would introduce some unexpected variations in comparative quantification when the samples are digested and then chemically isotope labeled in different aliquots. Even when identical protein aliquots are processed on these devices using post‐digestion chemical isotope labeling and the CVs of the ratios controlled to less than 50% in replicate analyses, about 10% of the quantified proteins have a ratio greater than two‐fold, whereas in theory the ratio is 1:1. Interestingly, the incomplete digestion with enzyme reactor is not a problem when metabolic isotope labeling samples were processed because the proteins are isotopically labeled in vivo prior to their simultaneous digestion within the reactor. Our results also demonstrated that both high quantification accuracy and high proteome coverage can be achieved in comparative proteome quantification using online enzyme digestion even when a limited amount of metabolic isotope labeling samples is used (1683 proteins comparatively quantified from 105 Hela cells).  相似文献   

6.
Hybridization between closely related species, whether naturally occurring or laboratory generated, is a useful tool for mapping the genetic basis of the phenotypic traits that distinguish species. The development of next‐generation sequencing techniques has greatly improved our ability to assign ancestry to hybrid genomes. One such next‐generation sequencing technique, multiplexed shotgun genotyping (or MSG), can be a powerful tool for genotyping hybrids. However, it is difficult a priori to predict the accuracy of MSG in natural hybrids because accuracy depends on ancestry tract length and number of ancestry informative markers. Here, we present a simulator, ‘simMSG’, that will allow researchers to design MSG experiments and show that in many cases MSG can accurately assign ancestry to hundreds of thousands of sites in the genomes of natural hybrids. The simMSG tool can be used to design experiments for diverse applications including QTL mapping, genotyping introgressed lines or admixture mapping.  相似文献   

7.
The purpose of this review is to present the most common and emerging DNA‐based methods used to generate data for biodiversity and biomonitoring studies. As environmental assessment and monitoring programmes may require biodiversity information at multiple levels, we pay particular attention to the DNA metabarcoding method and discuss a number of bioinformatic tools and considerations for producing DNA‐based indicators using operational taxonomic units (OTUs), taxa at a variety of ranks and community composition. By developing the capacity to harness the advantages provided by the newest technologies, investigators can “scale up” by increasing the number of samples and replicates processed, the frequency of sampling over time and space, and even the depth of sampling such as by sequencing more reads per sample or more markers per sample. The ability to scale up is made possible by the reduced hands‐on time and cost per sample provided by the newest kits, platforms and software tools. Results gleaned from broad‐scale monitoring will provide opportunities to address key scientific questions linked to biodiversity and its dynamics across time and space as well as being more relevant for policymakers, enabling science‐based decision‐making, and provide a greater socio‐economic impact. As genomic approaches are continually evolving, we provide this guide to methods used in biodiversity genomics.  相似文献   

8.
The application of high‐throughput sequencing‐based approaches to DNA extracted from environmental samples such as gut contents and faeces has become a popular tool for studying dietary habits of animals. Due to the high resolution and prey detection capacity they provide, both metabarcoding and shotgun sequencing are increasingly used to address ecological questions grounded in dietary relationships. Despite their great promise in this context, recent research has unveiled how a wealth of biological (related to the study system) and technical (related to the methodology) factors can distort the signal of taxonomic composition and diversity. Here, we review these studies in the light of high‐throughput sequencing‐based assessment of trophic interactions. We address how the study design can account for distortion factors, and how acknowledging limitations and biases inherent to sequencing‐based diet analyses are essential for obtaining reliable results, thus drawing appropriate conclusions. Furthermore, we suggest strategies to minimize the effect of distortion factors, measures to increase reproducibility, replicability and comparability of studies, and options to scale up DNA sequencing‐based diet analyses. In doing so, we aim to aid end‐users in designing reliable diet studies by informing them about the complexity and limitations of DNA sequencing‐based diet analyses, and encourage researchers to create and improve tools that will eventually drive this field to its maturity.  相似文献   

9.
Conventional wet chemistry methods to determine biomass composition are labor‐ and time‐intensive and require larger amounts of biomass (300 mg) than is often available. To overcome these limitations and to support a high‐throughput pretreatment and hydrolysis (HTPH) screening system, this article reports on the development of a downscaled biomass compositional analysis that is based on conventional wet chemistry techniques but is scaled down by a factor of 100 to use significantly less material. The procedure is performed in readily available high‐performance liquid chromatography vials and can be automated to reduce operator input and increase throughput. Comparison of the compositional analyses of three biomasses determined by the downscaled approach to those obtained by conventional methods showed that the downscaled method measured statistically identical carbohydrate compositions as standard procedures and also can provide reasonable estimates of lignin and ash contents. These results demonstrate the validity of the downscaled procedure for measuring biomass composition to enable the calculation of sugar yields and determination of trends in sugar release behavior in HTPH screening studies. Biotechnol. Bioeng. 2011;108: 306–312. © 2010 Wiley Periodicals, Inc.  相似文献   

10.
CDtool is a software package written to facilitate circular dichroism (CD) spectroscopic studies on both conventional lab-based instruments and synchrotron beamlines. It takes format-independent input data from any type of CD instrument, enables a wide range of standard and advanced processing methods, and, in a single user-friendly graphics-based package, takes raw data through the entire processing procedure and, importantly, uses data-mining techniques to retain in the final output all the information associated with the processing. It permits the facile comparison of data obtained from different instruments without the need for reformatting and displays it in graphical formats suitable for publication. It also includes the ability to automatically archive the processed data. This latter feature may be especially useful in light of recent funding institution directives with regard to data sharing and archiving and requirements for "good practice" and "traceability" within the pharmaceutical industry. In addition, CDtool includes a means of interfacing with protein data bank coordinate files and calculating secondary structures from them using alternate definitions and algorithms. This feature, along with a function that permits the facile production of new reference databases, enables the creation of specialized databases for secondary structural analyses of specific types of proteins. Thus the CDtool software not only enables rapid data processing and analyses but also includes many enhanced features not available in other CD data processing/analysis packages.  相似文献   

11.
Plant volatiles (PVs) mediate interactions between plants and arthropods, microbes and other plants, and are involved in responses to abiotic stress. PV emissions are therefore influenced by many environmental factors, including herbivore damage, microbial invasion, and cues from neighboring plants, and also light regime, temperature, humidity and nutrient availability. Thus, an understanding of the physiological and ecological functions of PVs must be based on measurements reflecting PV emissions under natural conditions. However, PVs are usually sampled in the artificial environments of laboratories or climate chambers. Sampling of PVs in natural environments is difficult, being limited by the need to transport, maintain and provide power to instruments, or use expensive sorbent devices in replicate. Ideally, PVs should be measured in natural settings with high replication, spatio‐temporal resolution and sensitivity, and modest costs. Polydimethylsiloxane (PDMS), a sorbent commonly used for PV sampling, is available as silicone tubing for as little as 0.60 € m?1 (versus 100–550 € each for standard PDMS sorbent devices). Small pieces of silicone tubing (STs) of various lengths from millimeters to centimeters may be added to any experimental setting and used for headspace sampling, with little manipulation of the organism or headspace. STs have sufficiently fast absorption kinetics and large capacity to sample plant headspaces over a timescale of minutes to hours, and thus can produce biologically meaningful ‘snapshots’ of PV blends. When combined with thermal desorption coupled to GC–MS (a 40‐year‐old widely available technology), use of STs yields reproducible, sensitive, spatio‐temporally resolved quantitative data from headspace samples taken in natural environments.  相似文献   

12.
Micro‐organisms play critical roles in many important biogeochemical processes in the Earth's biosphere. However, understanding and characterizing the functional capacity of microbial communities are still difficult due to the extremely diverse and often uncultivable nature of most micro‐organisms. In this study, we developed a new functional gene array, GeoChip 4, for analysing the functional diversity, composition, structure, metabolic potential/activity and dynamics of microbial communities. GeoChip 4 contained approximately 82 000 probes covering 141 995 coding sequences from 410 functional gene families related to microbial carbon (C), nitrogen (N), sulphur (S), and phosphorus (P) cycling, energy metabolism, antibiotic resistance, metal resistance/reduction, organic remediation, stress responses, bacteriophage and virulence. A total of 173 archaeal, 4138 bacterial, 404 eukaryotic and 252 viral strains were targeted, providing the ability to analyse targeted functional gene families of micro‐organisms included in all four domains. Experimental assessment using different amounts of DNA suggested that as little as 500 ng environmental DNA was required for good hybridization, and the signal intensities detected were well correlated with the DNA amount used. GeoChip 4 was then applied to study the effect of long‐term warming on soil microbial communities at a Central Oklahoma site, with results indicating that microbial communities respond to long‐term warming by enriching carbon degradation, nutrient cycling (nitrogen and phosphorous) and stress response gene families. To the best of our knowledge, GeoChip 4 is the most comprehensive functional gene array for microbial community analysis.  相似文献   

13.
We describe a miniaturized fluid array device for high‐throughput cell‐free protein synthesis (CFPS), aiming to match the throughput and scale of gene discovery. Current practice of using E. coli cells for production of recombinant proteins is difficult and cost‐prohibitive to implement in a high‐throughput format. As more and more new genes are being identified, there is a considerable need to have high‐throughput methods to produce a large number of proteins for studying structures and functions of the corresponding genes. The device consists of 96 units and each unit is for expression of one protein; thus up to 96 proteins can be produced simultaneously. The function of the fluid array was demonstrated by expression of a variety of proteins, with more than two orders of magnitude reduction in reagent consumption compared with a commercially available CFPS instrument. The protein expression yield in the device was up to 87 times higher for β‐glucoronidase than that in a conventional microplate. The concentration of β‐galactosidase expressed in the device was determined at 5.5 μg/μL. The feasibility of using the device for drug screening was demonstrated by measuring the inhibitory effects of mock drug compounds on synthesized β‐lactamase without the need for harvesting proteins, which enabled us to reduce the analysis time from days to hours. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

14.
15.
An automatic microscope system is designed to study the response of sperm motility to an annular laser trap. A continuous annular laser trap provides a parallel way to analyze and sort sperm based on their motility and to study the effects of laser radiation, optical force and external obstacles. In the described automatic microscope system, the phase contrast images of swimming sperm are digitized to the computer at video rates. The microscope stage is controlled in real‐time to relocate the sperm of interest to the annular trap with a normal or tangential entering angle. The sperm is continuously tracked and the swimming behavior is identified. Using this system, parallel sorting on human and gorilla sperm are achieved and threshold power levels separating the “fast” group and the “slow” group are compared for those two species. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
To reduce the amount of consumables and number of pipetting steps in high‐throughput screening, a constitutive expression system was developed that comprises four different promoters of varying strength. The system was validated by the expression of different sucrose phosphorylase enzymes from Leuconostoc mesenteroides, Lactobacillus acidophilus and Bifidobacterium adolescentis in 96‐deep‐ and low‐well plates at three temperatures. Drastically improved soluble expression in mini‐cultures was observed for the enzymes from L. mesenteroides strains by reducing the promoter strength from strong to intermediate and by expressing the proteins at lower temperatures. In contrast, the enzymes from B. adolescentis and L. acidophilus were expressed most efficiently with a strong promoter. The constitutive expression of sucrose phosphorylases in low‐well plates resulted in a level of activity that is equal or even better than what was achieved by inducible expression. Therefore, our plasmid set with varying constitutive promoters will be an indispensable tool to optimize enzyme expression for high‐throughput screening.  相似文献   

17.
Rice is an important global crop and represents a vital source of calories for many food insecure regions. Efforts to improve this crop by improving yield, nutritional content, stress tolerance, or resilience to climate change are certain to include biotechnological approaches, which rely on the expression of transgenes in planta. The throughput and cost of currently available transgenic expression systems is frequently incompatible with modern, high‐throughput molecular cloning methods. Here, we present a protocol for isolating high yields of green rice protoplasts and for PEG‐mediated transformation of isolated protoplasts. Factors affecting transformation efficiency were investigated, and the resulting protocol is fast, cheap, robust, high‐throughput, and does not require specialist equipment. When coupled to a high‐throughput modular cloning system such as Golden Gate, this transient expression system provides a valuable resource to help break the “design‐build‐test” bottleneck by permitting the rapid screening of large numbers of transgenic expression cassettes prior to stable plant transformation. We used this system to rapidly assess the expression level, subcellular localisation, and protein aggregation pattern of nine single‐gene expression cassettes, which represent the essential component parts of the β‐cyanobacterial carboxysome.  相似文献   

18.
Breeding by introgressive hybridization is a pivotal strategy to broaden the genetic basis of crops. Usually, the desired traits are monitored in consecutive crossing generations by marker‐assisted selection, but their analyses fail in chromosome regions where crossover recombinants are rare or not viable. Here, we present the Introgression Browser (iBrowser ), a bioinformatics tool aimed at visualizing introgressions at nucleotide or SNP (Single Nucleotide Polymorphisms) accuracy. The software selects homozygous SNPs from Variant Call Format (VCF) information and filters out heterozygous SNPs, multi‐nucleotide polymorphisms (MNPs) and insertion–deletions (InDels). For data analysis iBrowser makes use of sliding windows, but if needed it can generate any desired fragmentation pattern through General Feature Format (GFF) information. In an example of tomato (Solanum lycopersicum) accessions we visualize SNP patterns and elucidate both position and boundaries of the introgressions. We also show that our tool is capable of identifying alien DNA in a panel of the closely related S. pimpinellifolium by examining phylogenetic relationships of the introgressed segments in tomato. In a third example, we demonstrate the power of the iBrowser in a panel of 597 Arabidopsis accessions, detecting the boundaries of a SNP‐free region around a polymorphic 1.17 Mbp inverted segment on the short arm of chromosome 4. The architecture and functionality of iBrowser makes the software appropriate for a broad set of analyses including SNP mining, genome structure analysis, and pedigree analysis. Its functionality, together with the capability to process large data sets and efficient visualization of sequence variation, makes iBrowser a valuable breeding tool.  相似文献   

19.
High‐throughput sequencing methods have become a routine analysis tool in environmental sciences as well as in public and private sector. These methods provide vast amount of data, which need to be analysed in several steps. Although the bioinformatics may be applied using several public tools, many analytical pipelines allow too few options for the optimal analysis for more complicated or customized designs. Here, we introduce PipeCraft, a flexible and handy bioinformatics pipeline with a user‐friendly graphical interface that links several public tools for analysing amplicon sequencing data. Users are able to customize the pipeline by selecting the most suitable tools and options to process raw sequences from Illumina, Pacific Biosciences, Ion Torrent and Roche 454 sequencing platforms. We described the design and options of PipeCraft and evaluated its performance by analysing the data sets from three different sequencing platforms. We demonstrated that PipeCraft is able to process large data sets within 24 hr. The graphical user interface and the automated links between various bioinformatics tools enable easy customization of the workflow. All analytical steps and options are recorded in log files and are easily traceable.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号