首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanisms used by Campylobacter jejuni to colonize the (chicken) intestinal tract have not been defined. In this study, we obtained evidence that in the presence of chicken serum and mucus, C. jejuni secreted proteins that may play a role in the colonization of chicken gut (Campylobacter invasion antigen = Cia). C. jejuni strains NCTC11168V1 and 81-176, as well as an NCTC11168V1 flaA mutant, were found to colonize intestinal tract and secrete proteins in the presence of chicken mucus, chicken serum, or fetal bovine serum in cell culture–conditioned medium. C. jejuni strain NCTC11168V26, which was observed to be a poor colonizer compared with the other C. jejuni isolates, did not secrete Cia proteins. Secreted proteins were also recognized by Western immunoblot using sera from birds that had been colonized by C. jejuni. These data suggest that C. jejuni secretes Cia proteins during colonization of chicken gut and that these Cia proteins play an important role in colonization.  相似文献   

2.
The fastidious nature of the foodborne bacterial pathogen Campylobacter jejuni contrasts with its ability to survive in the food chain. The formation of biofilms, or the integration into existing biofilms by C. jejuni, is thought to contribute to food chain survival. As extracellular DNA (eDNA) has previously been proposed to play a role in C. jejuni biofilms, we have investigated the role of extracellular DNases (eDNases) produced by C. jejuni in biofilm formation. A search of 2791 C. jejuni genomes highlighted that almost half of C. jejuni genomes contains at least one eDNase gene, but only a minority of isolates contains two or three of these eDNase genes, such as C. jejuni strain RM1221 which contains the cje0256, cje0566 and cje1441 eDNase genes. Strain RM1221 did not form biofilms, whereas the eDNase-negative strains NCTC 11168 and 81116 did. Incubation of pre-formed biofilms of NCTC 11168 with live C. jejuni RM1221 or with spent medium from a RM1221 culture resulted in removal of the biofilm. Inactivation of the cje1441 eDNase gene in strain RM1221 restored biofilm formation, and made the mutant unable to degrade biofilms of strain NCTC 11168. Finally, C. jejuni strain RM1221 was able to degrade genomic DNA from C. jejuni NCTC 11168, 81116 and RM1221, whereas strain NCTC 11168 and the RM1221 cje1441 mutant were unable to do so. This was mirrored by an absence of eDNA in overnight cultures of C. jejuni RM1221. This suggests that the activity of eDNases in C. jejuni affects biofilm formation and is not conducive to a biofilm lifestyle. These eDNases do however have a potential role in controlling biofilm formation by C. jejuni strains in food chain relevant environments.  相似文献   

3.
Campylobacter jejuni helical shape is important for colonization and host interactions with straight mutants having altered biological properties. Passage on calcofluor white (CFW) resulted in C. jejuni 81‐176 isolates with morphology changes: either a straight morphology from frameshift mutations and single nucleotide polymorphisms in peptidoglycan hydrolase genes pgp1 or pgp2 or a reduction in curvature due a frameshift mutation in cjj81176_1105, a putative peptidoglycan endopeptidase. Shape defects were restored by complementation. Whole genome sequencing of CFW‐passaged strains showed no specific changes correlating to CFW exposure. The cjj81176_1279 (recR; recombinational DNA repair) and cjj81176_1449 (unknown function) genes were highly variable in all 81‐176 strains sequenced. A frameshift mutation in pgp1 of our laboratory isolate of the straight genome sequenced variant of 11168 (11168‐GS) was also identified. The PG muropeptide profile of 11168‐GS was identical to that of Δpgp1 in the original minimally passaged 11168 strain (11168‐O). Introduction of wild type pgp1 into 11168‐GS did not restore helical morphology. The recR gene was also highly variable in 11168 strains. Microbial cell‐to‐cell heterogeneity is proposed as a mechanism of ensuring bacterial survival in sub‐optimal conditions. In certain environments, changes in C. jejuni morphology due to genetic heterogeneity may promote C. jejuni survival.  相似文献   

4.
Campylobacter jejuni is a highly motile bacterium that responds via chemotaxis to environmental stimuli to migrate towards favourable conditions. Previous in silico analysis of the C. jejuni strain NCTC11168 genome sequence identified 10 open reading frames, tlp1‐10, that encode putative chemosensory receptors. We describe the characterization of the role and specificity of the Tlp1 chemoreceptor (Cj1506c). In vitro and in vivo models were used to determine if Tlp1 had a role in host colonization. The tlp1 isogenic mutant was more adherent in cell culture, however, showed reduced colonization ability in chickens. Specific interactions between the purified sensory domain of Tlp1 and l ‐aspartate were identified using an amino acid array and saturation transfer difference nuclear magnetic resonance spectroscopy. Chemotaxis assays showed differences between migration of wild‐type C. jejuni cells and that of a tlp1 isogenic mutant, specifically towards aspartate. Furthermore, using yeast two‐hybrid and three‐hybrid systems for analysis of protein–protein interactions, the cytoplasmic signalling domain of Tlp1 was found to preferentially interact with CheV, rather than the CheW homologue of the chemotaxis signalling pathway; this interaction was confirmed using immune precipitation assays. This is the first identification of an aspartate receptor in bacteria other than Escherichia coli and Salmonella enterica serovar Typhimurium.  相似文献   

5.
Campylobacter jejuni NCTC 11168 is widely used in research, but at least two variants have been reported. The available genome was sequenced from a variant which later showed a different phenotype and gene expression profile. Here we present the complete genome sequence of a second variant of C. jejuni NCTC 11168.  相似文献   

6.
Previous studies have identified a specific modification of the capsular polysaccharide as receptor for phages that infect Campylobacter jejuni. Using acapsular kpsM mutants of C. jejuni strains NCTC11168 and NCTC12658, we found that bacteriophage F341 infects C. jejuni independently of the capsule. In contrast, phage F341 does not infect C. jejuni NCTC11168 mutants that either lack the flagellar filaments (ΔflaAB) or that have paralyzed, i.e., nonrotating, flagella (ΔmotA and ΔflgP). Complementing flgP confirmed that phage F341 requires rotating flagella for successful infection. Furthermore, adsorption assays demonstrated that phage F341 does not adsorb to these nonmotile C. jejuni NCTC11168 mutants. Taken together, we propose that phage F341 uses the flagellum as a receptor. Phage-host interactions were investigated using fluorescence confocal and transmission electron microscopy. These data demonstrate that F341 binds to the flagellum by perpendicular attachment with visible phage tail fibers interacting directly with the flagellum. Our data are consistent with the movement of the C. jejuni flagellum being required for F341 to travel along the filament to reach the basal body of the bacterium. The initial binding to the flagellum may cause a conformational change of the phage tail that enables DNA injection after binding to a secondary receptor.  相似文献   

7.
摘要:【目的】构建空肠弯曲菌(Campylobacter jejuni)cheA基因插入突变株,了解CheA与空肠弯曲菌小鼠体内定植的相关性。【方法】运用同源重组的原理构建空肠弯曲菌cheA基因突变株,采用PCR技术检测cheA突变株的构建情况。通过基因回补试验构建cheA基因回补株。空肠弯曲菌感染小鼠,运用小鼠空肠内容物涂板计数的方法检测cheA突变株、cheA基因回补株和野生株定植小鼠能力的差异。【结果】PCR检测显示成功构建cheA基因突变株。空肠弯曲菌cheA基因突变株定植小鼠空肠的数量明显减少(P<0.05);cheA基因回补株定植小鼠空肠的数量跟野生株相比无明显差异(P>0.05)。【结论】本研究成功构建cheA基因突变株及其回补株。cheA基因可能参与空肠弯曲菌在小鼠体内定植的过程。  相似文献   

8.
9.
Campylobacter jejuni, a major food‐borne intestinal pathogen, preferentially utilizes a few specific amino acids and some organic acids such as pyruvate and l ‐ and d ‐lactate as carbon sources, which may be important for growth in the avian and mammalian gut. Here, we identify the enzymatic basis for C. jejuni growth on l ‐lactate. Despite the presence of an annotated gene for a fermentative lactate dehydrogenase (cj1167), no evidence for lactate excretion could be obtained in C. jejuni NCTC 11168, and inactivation of the cj1167 gene did not affect growth on lactate as carbon source. Instead, l ‐lactate utilization in C. jejuni NCTC 11168 was found to proceed via two novel NAD‐independent l ‐LDHs; a non‐flavin iron–sulfur containing three subunit membrane‐associated enzyme (Cj0075c‐73c), and a flavin and iron–sulfur containing membrane‐associated oxidoreductase (Cj1585c). Both enzymes contribute to growth on l ‐lactate, as single mutants in each system grew as well as wild‐type on this substrate, while a cj0075c cj1585c double mutant showed no l ‐lactate oxidase activity and did not utilize or grow on l ‐lactate; d ‐lactate‐dependent growth was unaffected. Orthologues of Cj0075c‐73c (LldEFG/LutABC) and Cj1585c (Dld‐II) were recently shown to represent two novel families of l ‐ and d ‐lactate oxidases; this is the first report of a bacterium where both enzymes are involved in l ‐lactate utilization only. The cj0075c‐73c genes are located directly downstream of a putative lactate transporter gene (cj0076c, lctP), which was also shown to be specific for l ‐lactate. The avian and mammalian gut environment contains dense populations of obligate anaerobes that excrete lactate; our data indicate that C. jejuni is well equipped to use l ‐ and d ‐lactate as both electron‐donor and carbon source.  相似文献   

10.
Bacteria in their natural environments frequently exist as mixed surface-associated communities, protected by extracellular material, termed biofilms. Biofilms formed by the human pathogen Campylobacter jejuni may arise in the gastrointestinal tract of animals but also in water pipes and other industrial situations, leading to their possible transmission into the human food chain either directly or via farm animals. Bacteriophages are natural predators of bacteria that usually kill their prey by cell lysis and have potential application for the biocontrol and dispersal of target bacteria in biofilms. The effects of virulent Campylobacter specific-bacteriophages CP8 and CP30 on C. jejuni biofilms formed on glass by strains NCTC 11168 and PT14 at 37°C under microaerobic conditions were investigated. Independent bacteriophage treatments (n ≥ 3) led to 1 to 3 log10 CFU/cm2 reductions in the viable count 24 h postinfection compared with control levels. In contrast, bacteriophages applied under these conditions effected a reduction of less than 1 log10 CFU/ml in planktonic cells. Resistance to bacteriophage in bacteria surviving bacteriophage treatment of C. jejuni NCTC 11168 biofilms was 84% and 90% for CP8 and CP30, respectively, whereas bacteriophage resistance was not found in similarly recovered C. jejuni PT14 cells. Dispersal of the biofilm matrix by bacteriophage was demonstrated by crystal violet staining and transmission electron microscopy. Bacteriophage may play an important role in the control of attachment and biofilm formation by Campylobacter in situations where biofilms occur in nature, and they have the potential for application in industrial situations leading to improvements in food safety.  相似文献   

11.
Although Campylobacter survives within amoeba in-vitro, it is unknown if intra-amoeba Campylobacter jejuni can colonize broilers. Five groups of 28 day-of-hatch chicks were placed into separate isolators. Groups (1) and (2) were challenged with page’s amoeba saline (PAS), and disinfected planktonic C. jejuni NCTC 11168, respectively. Groups (3), (4) and (5) were challenged with a C. jejuni positive control, C. jejuni in PAS, and intra-amoeba C. jejuni, respectively. After 1, 3, 7 and 14 days post challenge, seven birds from each unit were examined for C. jejuni colonization. For the first time we report that intra-amoeba C. jejuni colonized broilers.  相似文献   

12.
Campylobacter jejuni is responsible for the most common bacterial foodborne gastroenteritis. Despite its fastidious growth, it can survive harsh conditions through biofilm formation. In this work, fluorescence lectin-binding analysis was used to determine the glycoconjugates present in the biofilm matrix of two well-described strains. Screening of 72 lectins revealed strain-specific patterns with six lectins interacting with the biofilm matrix of both strains. The most common sugar moiety contained galactose and N-acetylgalactosamine. Several lectins interacted with N-acetylglucosamine and sialic acid, probably originated from the capsular polysaccharides, lipooligosaccharides and N-glycans of C. jejuni. In addition, glycoconjugates containing mannose and fucose were detected within the biofilm, which have not previously been found in the C. jejuni envelope. Detection of thioflavin T and curcumin highlighted the presence of amyloids in the cell envelope without association with specific cell appendages. The lectins ECA, GS-I, HMA and LEA constitute a reliable cocktail to detect the biofilm matrix of C. jejuni.  相似文献   

13.
One of the pathways involved in the acquisition of the essential metal iron by bacteria involves the reduction of insoluble Fe3+ to soluble Fe2+, followed by transport of Fe2+ to the cytoplasm. Flavins have been implicated as electron donors in this poorly understood process. Ferrous iron uptake is essential for intestinal colonization by the important pathogen Campylobacter jejuni and may be of particular importance under low-oxygen conditions. In this study, the links among riboflavin biosynthesis, ferric reduction, and iron acquisition in C. jejuni NCTC11168 have been investigated. A riboflavin auxotroph was generated by inactivation of the ribB riboflavin biosynthesis gene (Cj0572), and the resulting isogenic ribB mutant only grew in the presence of exogenous riboflavin or the riboflavin precursor diacetyl but not in the presence of the downstream products flavin adenine dinucleotide and flavin mononucleotide. Riboflavin uptake was unaffected in the ribB mutant under iron-limited conditions but was lower in both the wild-type strain and the ribB mutant under iron-replete conditions. Mutation of the fur gene, which encodes an iron uptake regulator of C. jejuni, resulted in an increase in riboflavin uptake which was independent of the iron content of the medium, suggesting a role for Fur in the regulation of the as-yet-unknown riboflavin transport system. Finally, ferric reduction activity was independent of iron availability in the growth medium but was lowered in the ribB mutant compared to the wild-type strain and, conversely, increased in the fur mutant. Taken together, the findings confirm close relationships among iron acquisition, riboflavin production, and riboflavin uptake in C. jejuni.  相似文献   

14.
We have constructed plasmids to be used for in vitro signature-tagged mutagenesis (STM) of Campylobacter jejuni and used these to generate STM libraries in three different strains. Statistical analysis of the transposon insertion sites in the C. jejuni NCTC 11168 chromosome and the plasmids of strain 81-176 indicated that their distribution was not uniform. Visual inspection of the distribution suggested that deviation from uniformity was not due to preferential integration of the transposon into a limited number of hot spots but rather that there was a bias towards insertions around the origin. We screened pools of mutants from the STM libraries for their ability to colonize the ceca of 2-week-old chickens harboring a standardized gut flora. We observed high-frequency random loss of colonization proficient mutants. When cohoused birds were individually inoculated with different tagged mutants, random loss of colonization-proficient mutants was similarly observed, as was extensive bird-to-bird transmission of mutants. This indicates that the nature of campylobacter colonization in chickens is complex and dynamic, and we hypothesize that bottlenecks in the colonization process and between-bird transmission account for these observations.  相似文献   

15.
The human enteropathogen Campylobacter jejuni, like many bacteria, employs siderophores such as enterobactin for cellular uptake of ferric iron. This transport process has been shown to be essential for virulence and presents an attractive opportunity for further study of the permissiveness of this pathway to small-molecule intervention and as inspiration for the development of synthetic carriers that may effectively transport cargo into Gram-negative bacteria. In this work, we have developed a facile and robust microscale assay to measure growth recovery of C. jejuni NCTC 11168 in liquid culture as a result of ferric iron uptake. In parallel, we have established the solid-phase synthesis of catecholamide compounds modeled on enterobactin fragments. Applying these methodological developments, we show that small synthetic iron chelators of minimal dimensions provide ferric iron to C. jejuni with equal or greater efficiency than enterobactin.  相似文献   

16.
Aims: The adhesion to an inert surface (the first step of biofilm formation) of the two main pathogenic Campylobacter species, Campylobacter jejuni and Campylobacter coli, isolated from diverse origins, was compared. Methods and Results: Adhesion assays were conducted in 96‐well, polystyrene microtiter plates using the BioFilm Ring Test® method. This new technique, based on magnetic bead entrapment, was shown to be suitable for analysing the adhesion of Campylobacter sp. strains by comparing the adhesion of four C. jejuni strains as revealed by the BioFilm Ring Test® and immunodetection. Among the 46 strains tested, C. jejuni and C. coli displayed different adhesion capabilities ranging from no adhesion to strong adhesion. However, no strain of C. coli was strongly adherent, and statistically, C. coli adhered less to an inert surface than C. jejuni. In addition, strains isolated from animals or carcasses were less adherent than those isolated from food‐processing and clinical cases. Conclusions: These observations suggest that the food environment and the human body could have selected strains with greater adhesion. Significance and Impact of the Study: The adhesion capability of strains could partly explain the cross‐contamination or re‐contamination of food products by Campylobacter. This property could provide a mode of survival for Campylobacter in the food chain.  相似文献   

17.
This study characterizes the interaction between Campylobacter jejuni and the 16 phages used in the United Kingdom typing scheme by screening spontaneous mutants of the phage-type strains and transposon mutants of the sequenced strain NCTC 11168. We show that the 16 typing phages fall into four groups based on their patterns of activity against spontaneous mutants. Screens of transposon and defined mutants indicate that the phage-bacterium interaction for one of these groups appears to involve the capsular polysaccharide (CPS), while two of the other three groups consist of flagellatropic phages. The expression of CPS and flagella is potentially phase variable in C. jejuni, and the implications of these findings for typing and intervention strategies are discussed.  相似文献   

18.
In this study we isolated novel bacteriophages, infecting the zoonotic bacterium Campylobacter jejuni. These phages may be used in phage therapy of C. jejuni colonized poultry to prevent spreading of the bacteria to meat products causing disease in humans. Many C. jejuni phages have been isolated using NCTC12662 as the indicator strain, which may have biased the selection of phages. A large group of C. jejuni phages rely on the highly diverse capsular polysaccharide (CPS) for infection and recent work identified the O-methyl phosphoramidate modification (MeOPN) of CPS as a phage receptor. We therefore chose seven C. jejuni strains each expressing different CPS structures as indicator strains in a large screening for phages in samples collected from free-range poultry farms. Forty-three phages were isolated using C. jejuni NCTC12658, NCTC12662 and RM1221 as host strains and 20 distinct phages were identified based on host range analysis and genome restriction profiles. Most phages were isolated using C. jejuni strains NCTC12662 and RM1221 and interestingly phage genome size (140 kb vs. 190 kb), host range and morphological appearance correlated with the isolation strain. Thus, according to C. jejuni phage grouping, NCTC12662 and NCTC12658 selected for CP81-type phages, while RM1221 selected for CP220-type phages. Furthermore, using acapsular ∆kpsM mutants we demonstrated that phages isolated on NCTC12658 and NCTC12662 were dependent on the capsule for infection. In contrast, CP220-type phages isolated on RM1221 were unable to infect non-motile ∆motA mutants, hence requiring motility for successful infection. Hence, the primary phage isolation strain determines both phage type (CP81 or CP220) as well as receptors (CPS or flagella) recognised by the isolated phages.  相似文献   

19.
Campylobacter jejuni is the most common bacterium that causes diarrhea worldwide, and chickens are considered the main reservoir of this pathogen. This study investigated the effects of serial truncation of lipooligosaccharide (LOS), a major component of the outer membrane of C. jejuni, on its bile resistance and intestinal colonization ability in chickens. Genes encoding manno-heptose synthetases or glycosyltransferases were inactivated to generate isogenic mutants. Serial truncation of the LOS core oligosaccharide caused a stepwise increase in susceptibilities of two C. jejuni strains, NCTC 11168 and 81-176, to bile acids. Inactivation of hldE, hldD, or waaC caused severe truncation of the core oligosaccharide, which greatly increased the susceptibility to bile acids. Both wild-type strains grew normally in chicken intestinal extracts, whereas the mutants with severe oligosaccharide truncation were not detected 12 h after inoculation. These mutants attained viable bacterial counts in the bile acid-free extracts 24 h after inoculation. The wild-type strain 11-164 was present in the cecal contents at >107 CFU/g on 5 days after challenge infection and after this time period, whereas its hldD mutant was present at <103 CFU/g throughout the experimental period. Trans-complementation of the hldD mutant with the wild-type hldD allele completely restored the in vivo colonization level to that of the wild-type strain. Mutants with a shorter LOS had higher hydrophobicities. Thus, the length of the LOS core oligosaccharide affected the surface hydrophobicity and bile resistance of C. jejuni as well as its ability to colonize chicken intestines.  相似文献   

20.
The cj0183 and cj0588 genes identified in the Campylobacter jejuni NCTC 11168 genome encode proteins with amino acid sequences predicted to be homologous to other bacterial hemolysins. The Cj0183 protein exhibits homology to Brachyspira hyodysenteriae TlyC protein, whereas the cj0588 gene product is homologous to TlyA proteins Brachyspira hyodysenteriae, Helicobacter pylori, and Mycobacterium tuberculosis, which play a crucial role in bacterial virulence. The aim of our work was to examine the hemolytic activity and determine the role of cj0183- and cj0588-encoded proteins on the adherence of chosen C. jejuni strains to the Caco-2 cell line by constructing deletion mutants in the mentioned genes. We found out there is no difference in hemolytic activity between both mutants in gene cj0183 and cj0588 and the wild strains. However, Cj0588 protein but not Cj0183 is involved in adherence to the Caco-2 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号