首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A growing number of human diseases seem to be associated with protein misfolding and deposition into aggregates. Bednarska and colleagues exploit the cytotoxic nature of protein aggregates to target bacterial infections. Protein aggregation is at the same time generic and sequence dependent; this allowed the authors to develop novel aggregation‐prone antimicrobial peptides that penetrate bacteria and induce a peptide specific proteostatic collapse that leads to fast bacterial death, without any observable effects on host cells. The applicability of this intriguing strategy was demonstrated by curing animal models from bacterial sepsis. Although the precise mechanisms underlying the bactericidal activity of the peptide aggregates are still not clear, there is no doubt that this approach offers an exciting therapeutic alternative to conventional antibiotics.  相似文献   

2.
Protegrin‐4 (PG‐4) is a member of the porcine leukocyte protegrins family of cysteine‐rich antimicrobial peptides (AMPs) isolated from Sus scrofa. It consists of 18 amino acid residues and works as a part of innate immune system. In this study, we examined the intrinsic aggregation propensity of this AMP using multiple computational algorithms, namely, TANGO, AGGRESCAN, FOLDAMYLOID, AMYLPRED, and ZYGGREGATOR, and found that the peptide is predicted to have a high propensity for the β sheet formation that disposes this peptide to be amyloidogenic. Under in vitro conditions, PG‐4 formed visible aggregates and displayed the hallmark properties of typical amyloids such as enhanced binding of Congo red, increased fluorescence with Thioflavin‐T, and fibrillar morphology under transmission electron microscopy. Then we examined its antimicrobial activity against Bacillus subtilis and found that the aggregated peptide retained its antimicrobial activity. Additionally, the aggregates remain non‐toxic to the HEK293 and Caco2 cells. Our study suggests that the inherent aggregation properties of AMP can rationally be explored as a potential source of peptide‐based antimicrobials with enhanced stability.  相似文献   

3.
Snakin‐1 (SN‐1) is a cysteine‐rich plant antimicrobial peptide and the first purified member of the snakin family. SN‐1 shows potent activity against a wide range of microorganisms, and thus has great biotechnological potential as an antimicrobial agent. Here, we produced recombinant SN‐1 in Escherichia coli by a previously developed coexpression method using an aggregation‐prone partner protein. Our goal was to increase the productivity of SN‐1 via the enhanced formation of insoluble inclusion bodies in E. coli cells. The yield of SN‐1 by the coexpression method was better than that by direct expression in E. coli cells. After refolding and purification, we obtained several milligrams of functionally active SN‐1, the identity of which was verified by MALDI‐TOF MS and NMR studies. The purified recombinant SN‐1 showed effective antimicrobial activity against test organisms. Our studies indicate that the coexpression method using an aggregation‐prone partner protein can serve as a suitable expression system for the efficient production of functionally active SN‐1. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1520–1528, 2017  相似文献   

4.
Natural peptides with antimicrobial activity are extremely diverse, and peptide synthesis technologies make it possible to significantly improve their properties for specific tasks. Here, we investigate the biological properties of the natural peptide indolicidin and the indolicidin‐derived novel synthetic peptide In‐58. In‐58 was generated by replacing all tryptophan residues on phenylalanine in D‐configuration; the α‐amino group in the main chain also was modified by unsaturated fatty acid. Compared with indolicidin, In‐58 is more bactericidal, more resistant to proteinase K, and less toxic to mammalian cells. Using molecular physics approaches, we characterized the action of In‐58 on bacterial cells at the cellular level. Also, we have found that studied peptides damage bacterial membranes. Using the Escherichia coli luminescent biosensor strain MG1655 (pcolD’::lux), we investigated the action of indolicidin and In‐58 at the subcellular level. At subinhibitory concentrations, indolicidin and In‐58 induced an SOS response. Our data suggest that indolicidin damages the DNA, but bacterial membrane perturbation is its principal mode of action. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
Antimicrobial peptides are important effector molecules of the innate immune system. Here, we describe that peptides derived from the heparin‐binding disulfide‐constrained loop region of human ß‐amyloid precursor protein are antimicrobial. The peptides investigated were linear and cyclic forms of NWCKRGRKQCKTHPH (NWC15) as well as the cyclic form comprising the C‐terminal hydrophobic amino acid extension FVIPY (NWCKRGRKQCKTHPHFVIPY; NWC20c). Compared with the benchmark antimicrobial peptide LL‐37, these peptides efficiently killed the Gram‐negative bacteria Escherichia coli and Pseudomonas aeruginosa, the Gram‐positive Staphylococcus aureus and Bacillus subtilis, and the fungi Candida albicans and Candida parapsilosis. Correspondingly, fluorescence and electron microscopy demonstrated that the peptides caused defects in bacterial membranes. Analogously, the peptides permeabilised negatively charged liposomes. Despite their bactericidal effect, the peptides displayed very limited hemolytic activities within the concentration range investigated and exerted very small membrane permeabilising effects on human epithelial cells. The efficiency of the peptides with respect to bacterial killing and liposome membrane leakage was in the order NWC20c > NWC15c > NWC15l, which also correlated to the adsorption density for these peptides at the model lipid membrane. Thus, whereas the cationic sequence is a minimum determinant for antimicrobial action, a constrained loop‐structure as well as a hydrophobic extension further contributes to membrane permeabilising activity of this region of amyloid precursor protein. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
The widespread natural sources‐derived cationic peptides have been reported to reveal bacterial killing and/or growth‐inhibiting properties. Correspondingly, a number of artificial peptides have been designed to understand antibacterial mechanism of the cationic peptides. These peptides are expected to be an alternative antibiotic against drug‐resistant pathogenic bacteria because major antimicrobial mechanism of cationic peptides involves bacterial membrane disorder, although those availabilities have not been well evaluated. In this study, cationic peptides containing Aib were prepared to evaluate the availability as an antimicrobial agent, especially against representative pathogenic bacteria. Among them, BRBA20, consisting of five repeated Aib‐Arg‐Aib‐Ala sequences, showed strong antibacterial activity against both Gram‐negative and Gram‐positive bacteria, including methicillin‐resistant Staphylococcus aureus. Additionally, growth of Serratia marcescens and multidrug‐resistant Pseudomonas aeruginosa, known as proteases‐secreting pathogenic bacteria, were also completely inhibited by BRBA20 under 20 µg/ml peptide concentrations. Our results suggested availabilities of Aib‐derived amphiphilicity and protease resistance in the design of artificial antimicrobial peptides. Comparing BRBA20 with BKBA20, it was also concluded that Arg residue is the preferred cationic source than Lys for antimicrobial action of amphiphilic helices. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
New bioengineering approaches are required for development of more active and less toxic antimicrobial peptides. In this study we used β‐hairpin antimicrobial peptide arenicin‐1 as a template for design of more potent antimicrobials. In particular, six shortened 17‐residue analogs were obtained by recombinant expression in Escherichia coli. Besides, we have introduced the second disulfide bridge by analogy with the structure of tachyplesins. As a result, a number of analogs with enhanced activity and cell selectivity were developed. In comparison with arenicin‐1, which acts on cell membranes with low selectivity, the most potent and promising its analog termed ALP1 possessed two‐fold higher antibacterial activity and did not affect viability of mammalian cells at concentration up to 50 μM. The therapeutic index of ALP1 against both Gram‐positive and Gram‐negative bacteria was significantly increased compared with that of arenicin‐1 while the mechanism of action remained the same. Like arenicin‐1, the analog rapidly disrupt membranes of both stationary and exponential phase bacterial cells and effectively kills multidrug‐resistant Gram‐negative bacteria. Furthermore, ALP1 was shown to bind DNA in vitro at a ratio of 1:1 (w/w). The circular dichroism spectra demonstrated that secondary structures of the shortened analogs were similar to that of arenicin‐1 in water solution, but significantly differed in membrane‐mimicking environments. This work shows that a strand length is one of the key parameters affecting cell selectivity of β‐hairpin antimicrobial peptides. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
The cell‐penetrating peptide Tat (48–60) (GRKKRRQRRRPPQ) derived from HIV‐1 Tat protein showed potent antibacterial activity (MIC: 2–8 µM ). To investigate the effect of dimerization of Tat (48–60) analog, [Tat(W): GRKKRRQRRRPWQ‐NH2], on antimicrobial activity and mechanism of bactericidal action, its dimeric peptides, di‐Tat(W)‐C and di‐Tat(W)‐K, were synthesized by a disulfide bond linkage and lysine linkage of monomeric Tat(W), respectively. From the viewpoint of a weight basis and the monomer concentration, these dimeric peptides displayed almost similar antimicrobial activity against six bacterial strains tested but acted more rapidly against Staphylococcus aureus on kinetics of bactericidal activity, compared with monomeric Tat(W). Unlike monomeric Tat(W), these dimeric peptides significantly depolarized the cytoplasmic membrane of intact S. aureus cells at MIC and induced dye leakage from bacterial‐membrane‐mimicking egg yolk L ‐α‐phosphatidylethanolamine/egg yolk L ‐α‐phosphatidyl‐DL ‐glycerol (7:3, w/w) vesicles. Furthermore, these dimeric peptides were less effective to translocate across lipid bilayers than monomeric Tat(W). These results indicated that the dimerization of Tat analog induces a partial change in the mode of its bactericidal action from intracellular target mechanism to membrane‐targeting mechanism. Collectively, our designed dimeric Tat peptides with high antimicrobial activity and rapid bactericidal activity appear to be excellent candidates for future development as novel antimicrobial agents. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
Hospital‐acquired infections caused by multidrug‐resistant bacteria pose significant challenges for treatment, which necessitate the development of new antibiotics. Antimicrobial peptides are considered potential alternatives to conventional antibiotics. The skin of Anurans (frogs and toads) amphibians is an extraordinarily rich source of antimicrobial peptides. CPF‐C1 is a typical cationic antimicrobial peptide that was originally isolated from the tetraploid frog Xenopus clivii. Our results showed that CPF‐C1 has potent antimicrobial activity against both sensitive and multidrug‐resistant bacteria. It disrupted the outer and inner membranes of bacterial cells. CPF‐C1 induced both propidium iodide uptake into the bacterial cell and the leakage of calcein from large liposome vesicles, which suggests a mode of action that involves membrane disturbance. Scanning electron microscopy and transmission electron microscopy verified the morphologic changes of CPF‐C1‐treated bacterial cells and large liposome vesicles. The membrane‐dependent mode of action signifies that the CPF‐C1 peptide functions freely and without regard to conventional resistant mechanisms. Additionally, it is difficult for bacteria to develop resistance against CPF‐C1 under this action mode. Other studies indicated that CPF‐C1 had low cytotoxicity against mammalian cell. In conclusion, considering the increase in multidrug‐resistant bacterial infections, CPF‐C1 may offer a new strategy that can be considered a potential therapeutic agent for the treatment of diseases caused by multidrug‐resistant bacteria. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
Temporin‐1Tl (TL) is a 13‐residue frog antimicrobial peptide (AMP) exhibiting potent antimicrobial and anti‐inflammatory activity. To develop novel AMP with improved anti‐inflammatory activity and antimicrobial selectivity, we designed and synthesized a series of TL analogs by substituting Trp, Arg and Lys at selected positions. Except for Escherichia coli and Staphylococcus epidermidis, all TL analogs exhibited retained or increased antimicrobial activity against seven bacterial strains including three methicillin‐resistant Staphylococcus aureus strains compared with TL. TL‐1 and TL‐4 showed a little increase in antimicrobial selectivity, while TL‐2 and TL‐3 displayed slightly decreased antimicrobial selectivity because of their about twofold increased hemolytic activity. All TL analogs demonstrated greatly increased anti‐inflammatory activity, evident by their higher inhibition of the production tumor necrosis factor‐α (TNF‐α) and nitric oxide and the mRNA expression of inducible nitric oxide synthase and TNF‐α in lipopolysaccharide (LPS)‐stimulated RAW264.7 macrophage cells, compared with TL. Taken together, the peptide anti‐inflammatory activity is as follows: TL‐2 ≈ TL‐3 ≈ TL‐4 > TL‐1 > TL. In addition, LPS binding ability of the peptides corresponded with their anti‐inflammatory activity. These results apparently suggest that the anti‐inflammatory activity of TL analogs is associated with the direct binding ability between these peptides and LPS. Collectively, our designed TL analogs possess improved anti‐inflammatory activity and retain antimicrobial activity without a significant increase in hemolysis. Therefore, it is evident that our TL analogs constitute promising candidates for the development of peptide therapeutics for gram‐negative bacterial infection. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
Synthetic linear antimicrobial peptides with cationic α‐helical structures, such as BP100, are valuable as novel therapeutics and preservatives. However, they tend to be toxic when expressed at high levels as recombinant peptides in plants, and they can be difficult to detect and isolate from complex plant tissues because they are strongly cationic and display low extinction coefficient and extremely limited immunogenicity. We therefore expressed BP100 with a C‐terminal tag which preserved its antimicrobial activity and demonstrated significant accumulation in plant cells. We used a fluorescent tag to trace BP100 following transiently expression in Nicotiana benthamiana leaves and showed that it accumulated in large vesicles derived from the endoplasmic reticulum (ER) along with typical ER luminal proteins. Interestingly, the formation of these vesicles was induced by BP100. Similar vesicles formed in stably transformed Arabidopsis thaliana seedlings, but the recombinant peptide was toxic to the host during latter developmental stages. This was avoided by selecting active BP100 derivatives based on their low haemolytic activity even though the selected peptides remained toxic to plant cells when applied exogenously at high doses. Using this strategy, we generated transgenic rice lines producing active BP100 derivatives with a yield of up to 0.5% total soluble protein.  相似文献   

12.
The simultaneous expression of costly immune effectors such as multiple antimicrobial peptides is a hallmark of innate immunity of multicellular organisms, yet the adaptive advantage remains unresolved. Here, we test current hypotheses on the evolution of such defence cocktails. We use RNAi gene knock‐down to explore, the effects of three highly expressed antimicrobial peptides, displaying different degrees of activity in vitro against Staphylococcus aureus, during an infection in the beetle Tenebrio molitor. We find that a defensin confers no survival benefit but reduces bacterial loads. A coleoptericin contributes to host survival without affecting bacterial loads. An attacin has no individual effect. Simultaneous knock‐down of the defensin with the other AMPs results in increased mortality and elevated bacterial loads. Contrary to common expectations, the effects on host survival and bacterial load can be independent. The expression of multiple AMPs increases host survival and contributes to the control of persisting infections and tolerance. This is an emerging property that explains the adaptive benefit of defence cocktails.  相似文献   

13.
Murraya koenigii miraculin‐like protein (MKMLP) gradually precipitates below pH 7.5. Here, we explore the basis for this aggregation by identifying the aggregation‐prone regions via comparative analysis of crystal structures acquired at several pH values. The prediction of aggregation‐prone regions showed the presence of four short peptides either in beta sheets or loops on surface of the protein. These peptides were distributed in two patches far apart on the surface. Comparison of crystal structures of MKMLP, determined at 2.2 Å resolution in pH 7.0 and 4.6 in the present study and determined at 2.9 Å in pH 8.0 in an earlier reported study, reveal subtle conformational differences resulting in gradual exposure of aggregation‐prone regions. As the pH is lowered, there are alterations in ionic interactions within the protein interactions of the chain with water molecules and exposure of hydrophobic residues. The analysis of symmetry‐related molecular interfaces involving one patch revealed shortening of nonpolar intermolecular contacts as the pH decreased. In particular, a decrease in the intermolecular distance between Trp103 of the aggregation‐prone peptide WFITTG (103–108) unique to MLPs was observed. These results demonstrated that aggregation occurs due to the cumulative effect of the changes in interactions in two aggregation‐prone defined regions. Proteins 2014; 82:830–840. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
β‐Hairpin antimicrobial peptides are among the most potent peptide antibiotics of animal origin. Arenicins, isolated earlier from marine polychaeta lugworm Arenicola marina, belong to a family of β‐hairpin antimicrobial peptides and display a broad spectrum of biological activities. However, despite being potent antimicrobials, arenicins are partially unapplicable as therapeutics as a result of their relatively high cytotoxicity against mammalian cells. In this study, a template‐based approach was used to create therapeutically valuable analogs of arenicin‐1 and identify amino acid residues important for antibacterial and cytotoxic activities of the peptide. The plasmids encoding recombinant analogs were constructed by mutagenesis technique based on inverse PCR amplification of the whole arenicin‐1 expression plasmid. The analogs were produced as a part of the fusion proteins in Escherichia coli. It was shown that an obvious reduction in hemolytic activity without lose of antimicrobial activity can be achieved by a single amino acid substitution in the non‐polar face of the molecule with hydrophilic residues such as serine and arginine. As the result, the selective analog with 50‐fold improved therapeutic index was developed. The circular dichroism spectra demonstrated that the secondary structure of the analog was similar to the natural arenicin‐1 in water solution and sodium dodecyl sulfate micelles but significantly differed in the presence of dodecylphosphocholine micelles mimicking mammalian membranes. Similarly to arenicin‐1, the designed analog killed bacteria via induction of the membrane damage, assessed using the fluorescent dye SYTOX Green uptake. Our results afford molecular insight into mechanism of antimicrobial action of the designed arenicin analogs and their possible clinical application. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
Biophysical studies on amyloidogenic and aggregation‐prone peptides often require large quantities of material. However, solid‐phase synthesis, handling, and purification of peptides often present challenges on these scales. Recombinant expression is an attractive alternative because of its low cost, the ability to isotopically label the peptides, and access to sequences exceeding ~50 residues. However, expression systems that seek to solubilize amyloidogenic peptides suffer from low yields, difficult optimizations, and isolation challenges. We present a general strategy for expressing and isolating amyloidogenic peptides in Escherichia coli by fusion to a polypeptide that drives the expression of attached peptides into bacterial inclusion bodies. This scheme minimizes toxicity during bacterial growth and enables the processing and handling of the peptides in denaturing solutions. Immobilized metal affinity chromatography, reverse phase HPLC, and cyanogen bromide cleavage are used to isolate the peptide, followed by further reverse phase HPLC, which yields milligram quantities of the purified peptide. We demonstrate that driving the peptides into inclusion bodies using fusion to BCL‐XL‐1/2 is a general strategy for their expression and isolation, as exemplified by the production of 11 peptides species.  相似文献   

16.
The unconventional antimicrobial peptides of the classical propionibacteria   总被引:1,自引:0,他引:1  
The classical propionibacteria produce genetically unique antimicrobial peptides, whose biological activities are without equivalents, and to which there are no homologous sequences in public databases. In this review, we summarize the genetics, biochemistry, biosynthesis, and biological activities of three extensively studied antimicrobial peptides from propionibacteria. The propionicin T1 peptide constitutes a bona fide example of an unmodified general secretory pathway (sec)-dependent bacteriocin, which is bactericidal towards all tested species of propionibacteria except Propionibacterium freudenreichii. The PAMP antimicrobial peptide represents a novel concept within bacterial antagonism, where an inactive precursor protein is secreted in large amounts, and which activation appears to rely on subsequent processing by proteases in its resident milieu. Propionicin F is a negatively charged bacteriocin that displays an intraspecies bactericidal inhibition spectrum. The biosynthesis of propionicin F appears to proceed through a series of unusual events requiring both N- and C-terminal processing of a precursor protein, which probably requires the radical SAM superfamily enzyme PcfB.  相似文献   

17.
The peptide named codesane (COD), consisting of 18 amino acid residues and isolated from the venom of wild bee Colletes daviesanus (Hymenoptera : Colletidae), falls into the category of cationic α‐helical amphipathic antimicrobial peptides. In our investigations, synthetic COD exhibited antimicrobial activity against Gram‐positive and Gram‐negative bacteria and Candida albicans but also noticeable hemolytic activity. COD and its analogs (collectively referred to as CODs) were studied for the mechanism of their action. The interaction of CODs with liposomes led to significant leakage of calcein entrapped in bacterial membrane‐mimicking large unilamellar vesicles made preferentially from anionic phospholipids while no calcein leakage was observed from zwitterionic liposomes mimicking membranes of erythrocytes. The preference of CODs for anionic phospholipids was also established by the blue shift in the tryptophan emission spectra maxima when the interactions of tryptophan‐containing COD analogs with liposomes were examined. Those results were in agreement with the antimicrobial and hemolytic activities of CODs. Moreover, we found that the studied peptides permeated both the outer and inner cytoplasmic membranes of Escherichia coli. This was determined by measuring changes in the fluorescence of probe N‐phenyl‐1‐naphthylamine and detecting cytoplasmic β‐galactosidase released during the interaction of peptides with E. coli cells. Transmission electron microscopy revealed that treatment of E. coli with one of the COD analogs caused leakage of bacterial content mainly from the septal areas of the cells. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
The ability of skin antimicrobial peptides of the southern bell frog, Litoria raniformis, to neutralize in vitro the endotoxin, proinflammatory lipopolysaccharide (LPS) complex, from two different gram‐negative bacterial pathogens, human pathogen Escherichia coli (0111:B4) and frog pathogen Klebsiella pneumoniae, was investigated. The LPS neutralization activity of the natural mixture of skin antimicrobial peptides was measured using chromogenic Limulus amebocyte lysate assays. These skin antimicrobial peptides neutralized the LPSs from both pathogens at physiologically relevant concentrations (IC50 < 100 µg/mL) showing their potential for non‐specific LPS neutralization in vivo in the skin of infected frogs and for development of anti‐endotoxin agents.  相似文献   

19.
XPF‐St7 (GLLSNVAGLLKQFAKGGVNAVLNPK) is an antimicrobial peptide isolated from Silurana tropicalis. We developed an α‐helical segment of XPF‐St7 termed as XPF2. Using the XPF2 as a framework, we increased the positive net charge of XPF2 by amino acid substitutions, and thus obtained two novel antimicrobial peptides XPF4 and XPF6. These were each fused with an ubiquitin tag and successfully expressed in Escherichia coli. This ubiquitin fusion system may present a viable alternative for industrial production of antimicrobial peptides. XPF4 and XPF6 showed much better overall antimicrobial activity against both Gram‐negative and Gram‐positive bacteria than XPF2. The therapeutic index of XPF4 and XPF6 was 5.6‐fold and 6.7‐fold of XPF2, respectively. Bacterial cell membrane permeabilization and genomic DNA interaction assays were utilized to explore the mechanism of action of XPF serial peptides. The results revealed that the target of these antimicrobial peptides was the bacterial cytoplasmic membrane. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
Background. Protein aggregation is a major contributor to the pathogenic mechanisms of human neurodegenerative diseases. Mutations in the CSTB (cystatin B) gene [StB (stefin B)] cause EPM1 (progressive myoclonus epilepsy of type 1), an epilepsy syndrome with features of neurodegeneration and increased oxidative stress. Oligomerization and aggregation of StB in mammalian cells have recently been reported. It has also been observed that StB is overexpressed after seizures and in certain neurodegenerative conditions, which could potentially lead to its aggregation. Human StB proved to be a good model system to study amyloid fibril formation in vitro and, as we show here, to study protein aggregation in cells. Results. Endogenous human StB formed smaller, occasional cytoplasmic aggregates and chemical inhibition of the UPS (ubiquitin–proteasome system) led to an increase in the amount of the endogenous protein and also increased its aggregation. Further, we characterized both the untagged and T‐Sapphire‐tagged StB on overexpression in mammalian cells. Compared with wild‐type StB, the EPM1 missense mutant (G4R), the aggregate‐prone EPM1 mutant (R68X) and the Y31 StB variant (both tagged and untagged) formed larger cytosolic and often perinuclear aggregates accompanied by cytoskeletal reorganization. Non‐homogeneous morphology of these large aggregates was revealed using TEM (transmission electron microscopy) with StB detected by immunogold labelling. StB‐positive cytoplasmic aggregates were partially co‐localized with ubiquitin, proteasome subunits S20 and S26 and components of microfilament and microtubular cytoskeleton using confocal microscopy. StB aggregates also co‐localized with LC3 and the protein adaptor p62, markers of autophagy. Flow cytometry showed that protein aggregation was associated with reduced cell viability. Conclusions. We have shown that endogenous StB aggregates within cells, and that aggregation is increased upon protein overexpression or proteasome inhibition. From confocal and TEM analyses, we conclude that aggregates of StB show some of the molecular characteristics of aggresomes and may be eliminated from the cell by autophagy. Intracellular StB aggregation shows a negative correlation with cell survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号