首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Phages of the P335 group have recently emerged as important taxa among lactococcal phages that disrupt dairy fermentations. DNA sequencing has revealed extensive homologies between the lytic and temperate phages of this group. The P335 lytic phage phi31 encodes a genetic switch region of cI and cro homologs but lacks the phage attachment site and integrase necessary to establish lysogeny. When the putative cI repressor gene of phage phi31 was subcloned into the medium-copy-number vector pAK80, no superinfection immunity was conferred to the host, Lactococcus lactis subsp. lactis NCK203, indicating that the wild-type CI repressor was dysfunctional. Attempts to clone the full-length cI gene in Lactococcus in the high-copy-number shuttle vector pTRKH2 were unsuccessful. The single clone that was recovered harbored an ochre mutation in the cI gene after the first 128 amino acids of the predicted 180-amino-acid protein. In the presence of the truncated CI construct, pTRKH2::CI-per1, phage phi31 was inhibited to an efficiency of plaquing (EOP) of 10(-6) in NCK203. A pTRKH2 subclone which lacked the DNA downstream of the ochre mutation, pTRKH2::CI-per2, confirmed the phenotype and further reduced the phi31 EOP to <10(-7). Phage phi31 mutants, partially resistant to CI-per, were isolated and showed changes in two of three putative operator sites for CI and Cro binding. Both the wild-type and truncated CI proteins bound the two wild-type operators in gel mobility shift experiments, but the mutated operators were not bound by the truncated CI. Twelve of 16 lytic P335 group phages failed to form plaques on L. lactis harboring pTRKH2::CI-per2, while 4 phages formed plaques at normal efficiencies. Comparisons of amino acid and DNA level homologies with other lactococcal temperate phage repressors suggest that evolutionary events may have led to inactivation of the phi31 CI repressor. This study demonstrated that a number of different P335 phages, lytic for L. lactis NCK203, have a common operator region which can be targeted by a truncated derivative of a dysfunctional CI repressor.  相似文献   

6.
7.
Role of the cro gene in bacteriophage lambda development   总被引:11,自引:0,他引:11  
Previous experiments have shown that the product of the cro gene of baeteriophage λ can exert an anti-repression activity, defined by the capacity of certain “cro-constitutive” defective lysogens to channel a superinfecting λ phage toward lytic development. We have used a combination of biological and biochemical assays to draw two main conclusions concerning this anti-repression activity: (1) after infection of a cro-constitutive cell, the superinfecting phage is unable to establish repression because it is unable to commence synthesis of cI protein (λ repressor) at a substantial rate; (2) the cause of this diminished synthesis of cI protein is the capacity of cro product to repress synthesis of the cII and cIII proteins, which normally activate the cI gene to establish repression in an infected cell. From our experiments and those of others, we suggest that cro product possesses a repression activity which is similar to that of the cI protein itself, but normally exerts a very different physiological role: the turnoff of synthesis of replication, recombination and regulation proteins as the virus enters the late stage of lytic development.  相似文献   

8.
Expression of transposable phages (TP) of Pseudomonas aeruginosa in the cells of P. putida was studied. The high efficiency of phage lytic development was shown both as a consequence of zygotic induction after transfer of the RP4::TPc+ plasmid into nonlysogenic recipients, and as a result of heat induction of lysogens PpG1 (D3112cts15). The high phage yield (20-25 particles of D3112cts phage per one cell of P. putida) is an evidence for a high level of transposition in the cells of this bacterial species. Plasmids RP4::TP are transferred into cells of PpG1 and PAO1 with similar frequency. However, the efficiency of establishment of the lysogenic state is lower in PpG1. Transposable phages of P. aeruginosa can integrate into the chromosome of PpG1 producing stable inducible lysogens. The presence of RP4 in the P. putida cells is not necessary for expression of transposable phages. The transposable phage D3112cts15 can be used in experiments of interspecies transduction of plasmids and chromosomal genes.  相似文献   

9.
The prevalence and nature of Shiga toxin (Stx)-producing Escherichia coli (STEC) and Stx phage were investigated in 720 swine fecal samples randomly collected from a commercial breeding pig farm in China over a 1-year surveillance period. Eight STEC O157 (1.1%), 33 STEC non-O157 (4.6%), and two stx-negative O157 (0.3%) isolates were identified. Fecal filtrates were screened directly for Stx phages using E. coli K-12 derivative strains MC1061 as indicator, yielding 15 Stx1 and 57 Stx2 phages. One Stx1 and eight Stx2 phages were obtained following norfloxacin induction of the eight field STEC O157 isolates. All Stx1 phages had hexagonal heads with long tails, while Stx2 phages had three different morphologies. Notably, most of field STEC O157 isolates released more free phages and Stx toxin after induction with ciprofloxacin. Furthermore, upon infection with the recombinant phage ΦMin27(Δstx::cat), E. coli laboratory strains produced both lysogenic and lytic phage, whereas two of the eight O157 STEC isolates produced only lysogens. The lysogens from laboratory strains produced infectious particles similar to ΦMin27. Similarly, the lysogens from the STEC O157 isolates released Stx phage too, although free ΦMin27(Δstx::cat) particles were not detected. Collectively, our results reveal that breeding pig farms could be important reservoirs for Stx phages and that residual antibacterial agents may enhance the release of Stx phages and the expression of Stx.  相似文献   

10.
We investigated the relationship between expression of the O side chain of outer membrane lipopolysaccharide (LPS) and infection by a Shiga toxin 2 (Stx2)-converting phage in normal and benign strains of Escherichia coli. Of 19 wild-type E. coli strains isolated from the feces of healthy subjects, those with low-molecular-weight LPS showed markedly higher susceptibility to lytic and lysogenic infection by Stx2 phages than those with high-molecular-weight LPS. All lysogens produced infectious phage particles and Stx2. The Stx-negative E. coli O157:H7 strain ATCC43888 with an intact O side chain was found to be resistant to lysis by an Stx2 phage and lysogenic infection by a recombinant Stx2 phage, whereas a rfbE mutant deficient in the expression of the O side chain was readily infected by the phage and yielded stable lysogens. The evidence suggests that an O side chain deficiency leads to the creation of new pathotypes of Shiga toxin-producing E. coli (STEC) within the intestinal microflora.  相似文献   

11.
Bacteriophages encode an arsenal of proteins to lyse bacteria by breaking their surface structures, constituting a promising alternative to antibiotics. However, the selection and bioengineering of endolysins and other phage lytic proteins need to be assisted by a previous knowledge of their molecular characteristics. In this study, all putative lytic proteins encoded in Pseudomonas phages were in silico examined to describe their diversity, host association and molecular evolution. A total of 491 proteins were identified among 223 phages, including endolysins, holins, pinholins, spanins, lipases and peptidases. Protein families and combination of functional domains were characteristic of phages belonging to the same genus, and these tended to infect a single host species. Clustering and phylogenetic analysis showed a protein grouping associated with bacterial host, and some functional domains being specific. Interestingly, most putative lytic proteins from phages infecting P. fluorescens and P. putida had negative net charges, opposed to most endolysins. Phage lifestyle also had an impact on protein variability, with transglycosylases, glucosaminidases, holins and spanins from lysogenic phages clustering into monophyletic nodes, suggesting the effect of a different selection pressure as a result of the co-option of a new function in the lysogenized bacteria.  相似文献   

12.
Temperate phages were induced from Streptococcus cremoris R1, BK5, and 134. DNA from the three induced phages was shown to be homologous with prophage DNA in the bacterial chromosomes of their lysogenic hosts by the Southern blot hybridization technique. 32P-labeled DNA from 11 lytic phages which had been isolated on cheese starters was similarly hybridized with DNA from 36 strains of lactic streptococci. No significant homology was detected between the phage and bacterial DNA. Phages and lactic streptococci used included phages isolated in a recently opened cheese plant and all the starter strains used in the plant since it commenced operation. The three temperate phages were compared by DNA-DNA hybridizations with 25 lytic phages isolated on cheese starters. Little or no homology was found between DNA from the temperate and lytic phages. In contrast, temperate phages showed a partial relationship with one another. Temperate phage DNA also showed partial homology with DNA from a number of strains of lactic streptococci, many of which have been shown to be lysogenic. This suggests that many temperate phages in lactic streptococci may be related to one another and therefore may be homoimmune with one another. These findings indicate that the release of temperate phages from starter cells currently in use is unlikely to be the predominant source of lytic phages in cheese plants.  相似文献   

13.
Summary The physical maps of the LP51 and LP52 prophages in lysogenic strains of Bacillus licheniformis were constructed on the basis of data obtained by hybridization of phage DNA probes with Southern blots of restricted DNA of the lysogens. The data were compatible with the Campbell model for chromosomal integration; the attP site was mapped at 58.7–61.8 map units of the genomes of both phages. Identification of prophage-host DNA junction fragments indicated the presence of a unique attB site on the bacterial chromosome; the set of junction fragments in the strain B. licheniformis ATCC 10716 was identical to that of ATCC 11946, but different from ATCC 8187. Both the LP51 and LP52 phages used the same integration sites. Upon reinfection with either phage, the cured strains UM12 and UM18 (i.e. 10716 and 11946 cured of LP52 or LP51, respectively) turned out to be integration deficient. In surface cultures the reinfected bacteria could be maintained in the lysogenic state without, however, integrating the phage genome; when these bacteria were passaged in submerged cultures, several modes of anomalous integration were observed, and the phage segregated into a variety of forms, discernible by virulence and plaque morphology. In liquid cultures of UM12(LP51) or UM12(LP52) lytic forms finally predominated, while most lysogenized UM18 were converted into defective lysogens which contained a defective prophage in a stably integrated form.  相似文献   

14.
Strains of the Lactobacillus casei group have been extensively studied because some are used as probiotics in foods. Conversely, their phages have received much less attention. We analyzed the complete genome sequences of five L. paracasei temperate phages: CL1, CL2, iLp84, iLp1308, and iA2. Only phage iA2 could not replicate in an indicator strain. The genome lengths ranged from 34,155 bp (iA2) to 39,474 bp (CL1). Phages iA2 and iLp1308 (34,176 bp) possess the smallest genomes reported, thus far, for phages of the L. casei group. The GC contents of the five phage genomes ranged from 44.8 to 45.6%. As observed with many other phages, their genomes were organized as follows: genes coding for DNA packaging, morphogenesis, lysis, lysogeny, and replication. Phages CL1, CL2, and iLp1308 are highly related to each other. Phage iLp84 was also related to these three phages, but the similarities were limited to gene products involved in DNA packaging and structural proteins. Genomic fragments of phages CL1, CL2, iLp1308, and iLp84 were found in several genomes of L. casei strains. Prophage iA2 is unrelated to these four phages, but almost all of its genome was found in at least four L. casei strains. Overall, these phages are distinct from previously characterized Lactobacillus phages. Our results highlight the diversity of L. casei phages and indicate frequent DNA exchanges between phages and their hosts.  相似文献   

15.
The life cycle of phage λ has been studied extensively. Of particular interest has been the process leading to the decision of the phage to switch from lysogenic to lytic cycle. The principal participant in this process is the λcI repressor, which is cleaved under conditions of DNA damage. Cleaved λcI no longer acts as a repressor, allowing phage λ to switch from its lysogenic to lytic cycle. The well‐known mechanism responsible for λcI cleavage is the SOS response. We have recently reported that the Escherichia coli toxin‐antitoxin mazEF pathway inhibits the SOS response; in fact, the SOS response is permitted only in E. coli strains deficient in the expression of the mazEF pathway. Moreover, in strains lysogenic for prophage λ, the SOS response is enabled by the presence of λrexB. λRexB had previously been found to inhibit the degradation of the antitoxin MazE, thereby preventing the toxic action of MazF. Thus, phage λ rexB gene not only safeguards the prophage state by preventing death of its E. coli host but is also indirectly involved in the lysogenic–lytic switch.  相似文献   

16.
WO is a temperate bacteriophage that infects Wolbachia, a maternally inherited endosymbiont of arthropods. WO has lysogenic and lytic cycles, the latter of which is an important process for the spread of WO infection. In this study, we measured the lytic activities of two WO phages, WOCauB2 and WOCauB3, infecting a Wolbachia strain, wCauB. In the lytic cycle of WO, both ends of the prophage are ligated to create a junction sequence called attP in the phage genome. We performed real-time quantitative polymerase chain reaction to measure the amounts of attP sequences produced by WOCauB2 and WOCauB3 in wCauB-infected Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae) and wCauB-infected insect cell lines. WOCauB2 produced the phage genome more actively than WOCauB3 in E. kuehniella, whereas WOcauB3 was more active than WOCauB2 in the cell lines, suggesting that the environment of host cells in which Wolbachia is harbored affects the lytic activity of WO phages. The lytic activity was constantly very low: the amounts of attP relative to the prophages were lower than 1?×?10?3 in all measurements, which was discussed in conjunction with the intracellular life of Wolbachia.  相似文献   

17.
18.
19.
20.
Summary Strains of Escherichia coli C or K lysogenic for the non-inducible phage P2 show a lower survival following X-ray irradiation as compared to nonlysogenic strains. This difference in X-ray sensitivity is not accompanied by a significant difference in X-ray induced mutability. The capacity of X-irradiated P2 lysogens to multiply any of a number of unirradiated infecting phages is severely impaired. These effects of X-ray treatment can be most simply explained as a consequence of the fact that protein and RNA syntheses are strongly inhibited in P2 lysogens after X-irradiation. All the above events specifically occurring in X-rayed P2 lysogens are dependent on the P2 gene old.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号