首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromosome copy number in cells is controlled so that the frequency of initiation of DNA replication matches that of cell division. In bacteria, this is achieved through regulation of the interaction between the initiator protein DnaA and specific DNA elements arrayed at the origin of replication. DnaA assembles at the origin and promotes DNA unwinding and the assembly of a replication initiation complex. SirA is a DnaA‐interacting protein that inhibits initiation of replication in diploid Bacillus subtilis cells committed to the developmental pathway leading to formation of a dormant spore. Here we present the crystal structure of SirA in complex with the N‐terminal domain of DnaA revealing a heterodimeric complex. The interacting surfaces of both proteins are α‐helical with predominantly apolar side‐chains packing in a hydrophobic interface. Site‐directed mutagenesis experiments confirm the importance of this interface for the interaction of the two proteins in vitro and in vivo. Localization of GFP–SirA indicates that the protein accumulates at the replisome in sporulating cells, likely through a direct interaction with DnaA. The SirA interacting surface of DnaA corresponds closely to the HobA‐interacting surface of DnaA from Helicobacter pylori even though HobA is an activator of DnaA and SirA is an inhibitor.  相似文献   

2.
3.
Chromosome strand segregation during sporulation in Bacillus subtilis   总被引:2,自引:0,他引:2  
After the initiation of spore formation in Bacillus subtilis, the products of the final round of DNA replication segregate into two cells, i.e. the prespore and the mother cell. The prespore, which is known to contain a single completed chromosome, develops into a mature endospore which can be readily separated from mother cells and non-sporulating cells on the basis of its resistance properties. We have used a procedure originally developed to label the terminus region of the B. subtilis chromosome to specifically label the newly synthesized strands of DNA during the final round of DNA replication before sporulation. We have purified prespore DNA and used strand-specific probes to measure the radioactivity incorporated. The results show that the sister chromosomes segregate at random into the prespore. This result has implications for the segregation of chromosomes during vegetative growth and for the generation of cellular asymmetry during sporulation.  相似文献   

4.
How cells maintain their ploidy is relevant to cellular development and disease. Here, we investigate the mechanism by which the bacterium Bacillus subtilis enforces diploidy as it differentiates into a dormant spore. We demonstrate that a sporulation-induced protein SirA (originally annotated YneE) blocks new rounds of replication by targeting the highly conserved replication initiation factor DnaA. We show that SirA interacts with DnaA and displaces it from the replication origin. As a result, expression of SirA during growth rapidly blocks replication and causes cell death in a DnaA-dependent manner. Finally, cells lacking SirA over-replicate during sporulation. These results support a model in which induction of SirA enforces diploidy by inhibiting replication initiation as B. subtilis cells develop into spores.  相似文献   

5.
The early stages of sporulation in Bacillus subtilis incorporate a modified, highly asymmetric cell division. It is now clear that most, if not all, of the components of the vegetative division machinery are used also for asymmetric division. However, the machinery for chromosome segregation may differ significantly between vegetative growth and sporulation. Several interesting checkpoint mechanisms couple cell cycle events to gene expression early in sporulation. This review summarises important advances in the understanding of chromosome segregation and cell division at the onset of sporulation in B.subtilis in the past three years.  相似文献   

6.
7.
8.
9.
10.
Thomas Linn  Richard Losick 《Cell》1976,8(1):103-114
The program of protein synthesis was examined during sporulation in Bacillus subtilis as an index of the control of gene expression. At various stages of growth and spore formation, cells of B. subtilis were pulse-labeled with 35S-methionine. Protein was extracted from the radioactively labeled bacteria and then subjected to high resolution one-dimensional and two-dimensional slab gel electrophoresis. We report that sporulating cells restricted or “turned off” the synthesis of certain polypeptides characteristic of the vegetative phase of growth. In certain cases, this “turn off” was prevented in a mutant (SpoOa-5NA) blocked at the first stage of spore formation. Sporulating bacteria also elaborated new polypeptide species that could not be detected in vegetatively growing cells or in cells of the asporogenous mutant SpoOa-5NA in sporulation medium. The synthesis of these sporulation-specific proteins was “turned on” in a temporally defined sequence throughout the period of spore formation. Spore coat protein, for example, was first synthesized at 4 hr after the onset of sporulation, the time at which refractile prespores appeared. Certain sporulation-specific polypeptides including the coat protein were among the most actively produced polypeptides in sporulating cells.  相似文献   

11.
12.
13.
14.
Bacterial chromosome segregation usually involves cytoskeletal ParA proteins, ATPases which can form dynamic filaments. In aerial hyphae of the mycelial bacterium Streptomyces coelicolor, ParA filaments extend over tens of microns and are responsible for segregation of dozens of chromosomes. We have identified a novel interaction partner of S. coelicolor ParA, ParJ. ParJ negatively regulates ParA polymerization in vitro and is important for efficient chromosome segregation in sporulating aerial hyphae. ParJ-EGFP formed foci along aerial hyphae even in the absence of ParA. ParJ, which is encoded by sco1662, turned out to be one of the five actinobacterial signature proteins, and another of the five is a ParJ paralogue. We hypothesize that polar growth, which is characteristic not only of streptomycetes, but even of simple Actinobacteria, may be interlinked with ParA polymer assembly and its specific regulation by ParJ.  相似文献   

15.
16.
Soj (ParA) and Spo0J (ParB) of Bacillus subtilis belong to a conserved family of proteins required for efficient plasmid and chromosome partitioning in many bacterial species. Unlike most Par systems, for which intact copies of both parA and parB are required for the Par system to function, inactivating soj does not cause a detectable chromosome partitioning phenotype whereas inactivating spo0J leads to a 100-fold increase in the production of anucleate cells. This suggested either that Soj does not function like other ParA homologues, or that a cellular factor might compensate for the absence of soj. We found that inactivating smc, the gene encoding the structural maintenance of chromosomes (SMC) protein, unmasked a role for Soj in chromosome partitioning. A soj null mutation dramatically enhanced production of anucleate cells in an smc null mutant. To look for effects of a soj null on other phenotypes perturbed in a spo0J null mutant, we analysed replication initiation and origin positioning in (soj-spo0J)+, Deltasoj, Deltaspo0J and Delta(soj-spo0J) cells. All of the mutations caused increased initiation of replication and, to varying extents, affected origin positioning. Using a new assay to measure separation of the chromosomal origins, we found that inactivating soj, spo0J or both led to a significant defect in separating replicated sister origins, such that the origins remain too close to be spatially resolved. Separation of a region outside the origin was not affected. These results indicate that there are probably factors helping to pair sister origin regions for part of the replication cycle, and that Soj and Spo0J may antagonize this pairing to contribute to timely separation of replicated origins. The effects of Deltasoj, Deltaspo0J and Delta(soj-spo0J) mutations on origin positioning, chromosome partitioning and replication initiation may be a secondary consequence of a defect in separating replicated origins.  相似文献   

17.
18.
Bacteria regulate the frequency and timing of DNA replication initiation by controlling the activity of the replication initiator protein DnaA. SirA is a recently discovered regulator of DnaA in Bacillus subtilis whose synthesis is turned on at the start of sporulation. Here, we demonstrate that SirA contacts DnaA at a patch of 3 residues located on the surface of domain I of the replication initiator protein, corresponding to the binding site used by two unrelated regulators of DnaA found in other bacteria. We show that the interaction of SirA with domain I inhibits the ability of DnaA to bind to the origin of replication. DnaA mutants containing amino acid substitutions of the 3 residues are functional in replication initiation but are immune to inhibition by SirA.  相似文献   

19.
The growth of the recombinant Bacillus subtilis strain AJ73 carrying the Bacillus intermedius 3-19 glutamyl endopeptidase gene on a multicopy plasmid and the effect of some nutrients on the efficiency of extracellular glutamyl endopeptidase production in the stationary growth phase were studied. In this phase, the concentration of glutamyl endopeptidase in the culture liquid peaked at the 48th and 78th h of cultivation and depended on the composition of the cultivation medium. Unlike the synthesis of glutamyl endopeptidase in the trophophase (i.e., during vegetative growth), which was suppressed by glucose, the synthesis of this enzyme during sporulation was resistant to glucose present in the cultivation medium. A multifactorial experimental design allowed optimal proportions between the concentrations of major nutrients (peptone and inorganic phosphate) to be determined. Inorganic phosphate and ammonium ions augmented the production of glutamyl endopeptidase by 30-150%, and complex organic substrates, such as casein and gelatin, enhanced the production of glutamyl endopeptidase by 50-100%. During sporulation, the production of glutamyl endopeptidase was stimulated by some bivalent cations (Ca2+, Mg2+, and Co2+) and inhibited by others (Zn2+, Fe2+, and Cu2+). The inference is drawn that the regulatory mechanisms of glutamyl endopeptidase synthesis during vegetative growth and sporulation are different.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号