首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SEDS (Shape, Elongation, Division and Sporulation) proteins are widely conserved peptidoglycan (PG) glycosyltransferases that form complexes with class B penicillin-binding proteins (bPBPs, with transpeptidase activity) to synthesize PG during bacterial cell growth and division. Because of their crucial roles in bacterial morphogenesis, SEDS proteins are one of the most promising targets for the development of new antibiotics. However, how SEDS proteins recognize their substrate lipid II, the building block of the PG layer, and polymerize it into glycan strands is still not clear. In this study, we isolated and characterized dominant-negative alleles of FtsW, a SEDS protein critical for septal PG synthesis during bacterial cytokinesis. Interestingly, most of the dominant-negative FtsW mutations reside in extracellular loops that are highly conserved in the SEDS family. Moreover, these mutations are scattered around a central cavity in a modeled FtsW structure, which has been proposed to be the active site of SEDS proteins. Consistent with this, we found that these mutations blocked septal PG synthesis but did not affect FtsW localization to the division site, interaction with its partners nor its substrate lipid II. Taken together, these results suggest that the residues corresponding to the dominant-negative mutations likely constitute the active site of FtsW, which may aid in the design of FtsW inhibitors.  相似文献   

2.
3.
4.
The peptidoglycan cross-bridges of Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium consist of the sequences Gly(5), l-Ala(2), and d-Asx, respectively. Expression of the fmhB, femA, and femB genes of S. aureus in E. faecalis led to the production of peptidoglycan precursors substituted by mosaic side chains that were efficiently used by the penicillin-binding proteins for cross-bridge formation. The Fem transferases were specific for incorporation of glycyl residues at defined positions of the side chains in the absence of any additional S. aureus factors such as tRNAs used for amino acid activation. The PBPs of E. faecalis displayed a broad substrate specificity because mosaic side chains containing from 1 to 5 residues and Gly instead of l-Ala at the N-terminal position were used for peptidoglycan cross-linking. Low affinity PBP2a of S. aureus conferred beta-lactam resistance in E. faecalis and E. faecium, thereby indicating that there was no barrier to heterospecific expression of resistance caused by variations in the structure of peptidoglycan precursors. Thus, conservation of the structure of the peptidoglycan cross-bridges in members of the same species reflects the high specificity of the enzymes for side chain synthesis, although this is not essential for the activity of the PBPs.  相似文献   

5.
肽聚糖是乳酸菌细胞壁的必需成分,它的化学结构较为保守固定,而其合成是一个涉及多步反应的复杂过程。乳酸菌肽聚糖具有多种生物学活性,比如免疫增强功能、抗感染、抗肿瘤及抗过敏等。本文对乳酸菌肽聚糖的组成结构和生物学活性进行了简要的介绍,重点综述了近年来乳酸菌肽聚糖代谢及其调控过程的研究进展,并指出了乳酸菌肽聚糖未来研究的方向。  相似文献   

6.
The concentration and species composition of viableGram-negative bacteria was determined in samples of coniferous wood (Scots pine) and deciduous wood (European beech), and in air samples taken during the processing of these woods in sawmills. The concentration of Gram-negative bacteria in the sapwood of pine logs ranged from 1.0 × 101 to 6.2 × 104 CFU/g. Their concentration in the air of the pine processing sawmill was within a range of 1.0 × 102–6.3 × 102 CFU/m3. Concentration of Gram-negative bacteria in the sapwood of beech logs was similar to that in the sapwood of pine logs, ranging from 1.0 × 101 to 4.6 × 104 CFU/g. However, the concentration of these bacteria in the air of a beech processing sawmill was within a range of 7.8 × 103–1.3 × 104 CFU/m3, being significantly higher than in a pine processing sawmill. Enterobacteriaceae strains, mostly Enterobacter spp. and Rahnella spp., made up 70–75% of Gram-negative bacteria isolated from pine and beech wood and from the air pollutedwith sawdust from these woods. The aerial exposure to Gram-negative bacteria possessing endotoxic andallergenic properties poses potential risk ofoccupational respiratory disorders among sawmillworkers, in particular those processing beech wood.  相似文献   

7.
Mycobacterium tuberculosis is a major global pathogen whose threat has increased with the emergence of multidrug-resistant strains. The cell wall of M. tuberculosis is thick, rigid, and hydrophobic, which serves to protect the organism from the environment and makes it highly impermeable to conventional antimicrobial agents. There is little known about cell wall autolysins (also referred to as peptidoglycan hydrolases) of mycobacteria. We identified an open reading frame (Rv3915) in the M. tuberculosis genome designated cwlM that appeared consistent with a peptidoglycan hydrolase. The 1218-bp gene was amplified by PCR, cloned and expressed in E. coli strain HMS174(DE-3), and its gene product, a 47-kDa recombinant protein, was purified and partially characterized. Purified CwlM was able to lyse whole mycobacteria, release peptidoglycan from the cell wall of Micrococcus luteus and Mycobacterium smegmatis, and cleave N-acetylmuramoyl-L-alanyl-D-isoglutamine, releasing free N-acetylmuramic acid. These results indicate that CwlM is a novel autolysin and identify cwlM as the first, to our knowledge, autolysin gene identified and cloned from M. tuberculosis. CwlM offers a new target for a unique class of drugs that could alter the permeability of the mycobacterial cell wall and enhance the effectiveness of treatments for tuberculosis.  相似文献   

8.
N-acetylmuramoyl-l-alanine amidase (NAMLAA) hydrolyzes bacterial peptidoglycan and is present in human serum. A peptidoglycan-recognition protein 2 (PGLYRP2) is expressed in human liver and has N-acetylmuramoyl-l-alanine amidase activity. Here, we determined the amino acid sequences of human serum NAMLAA and liver PGLYRP2 and tested the hypothesis that serum NAMLAA and PGLYRP2 are the same protein. Liver PGLYRP2 and serum NAMLAA had the same mass determined by mass spectrometry and polyacrylamide gel electrophoresis, and both proteins and recombinant PGLYRP2 reacted with polyclonal anti-NAMLAA and anti-PGLYRP2 antibodies, and with monoclonal anti-NAMLAA antibodies. Digestion of serum NAMLAA with trypsin, chymotrypsin, or trypsin plus V8 protease, or with CNBr yielded, respectively, 37, 40, and 3 overlapping peptides that matched 100% and covered 81% of the deduced amino acid sequence of mature PGLYRP2. These peptides overlapped all exon-intron junctions indicating no alternative splice forms. Digestion of liver PGLYRP2 with trypsin yielded 23 peptides that matched 100% and covered 44% of the deduced amino acid sequence of mature PGLYRP2. Serum NAMLAA had a C398-C404 disulfide, partial phosphorylation of S218, and deamidation of N253 and N301. These results indicate that serum NAMLAA and liver PGLYRP2 are the same protein encoded by the pglyrp2 gene.  相似文献   

9.
10.
The peptidoglycan (PG) of Lactobacillus plantarum contains amidated meso-diaminopimelic acid (mDAP). The functional role of this PG modification has never been characterized in any bacterial species, except for its impact on PG recognition by receptors of the innate immune system. In silico analysis of loci carrying PG biosynthesis genes in the L. plantarum genome revealed the colocalization of the murE gene, which encodes the ligase catalyzing the addition of mDAP to UDP-N-muramoyl-d-glutamate PG precursors, with asnB1, which encodes a putative asparagine synthase with an N-terminal amidotransferase domain. By gene disruption and complementation experiments, we showed that asnB1 is the amidotransferase involved in mDAP amidation. PG structural analysis revealed that mDAP amidation plays a key role in the control of the l,d-carboxypeptidase DacB activity. In addition, a mutant strain with a defect in mDAP amidation is strongly affected in growth and cell morphology, with filamentation and cell chaining, while a DacB-negative strain displays a phenotype very similar to that of a wild-type strain. These results suggest that mDAP amidation may play a critical role in the control of the septation process.  相似文献   

11.
An microRNA (miRNA) signature to predict the clinical outcome of pancreatic adenocarcinoma (PAAD) is still lacking. In the current study, we aimed at identifying and evaluating a prognostic miRNA signature for patients with PAAD. The miRNA expression profile and the clinical information regarding patients with PAAD were recruited from The Cancer Genome Atlas database. Differentially expressed miRNAs were identified between normal and tumor samples. By means of survival analysis, a 4-miRNA signature for predicting patients' with PAAD overall survival (OS) was constructed. Receiver operating characteristic (ROC) analysis was applied to determine the efficiency of survival prediction. Furthermore, the biological function of the predicted miRNAs was evaluated using a bioinformatics approach. Four (hsa-mir-126, hsa-mir-3613, hsa-mir-424, and hsa-mir-4772) out of 17 differentially expressed miRNAs were associated to the OS of patients with PAAD. Moreover, the area under the curve (AUC) of the constructed 4-miRNA signature associated to patients' with PAAD 2-year survival was 0.789. The multivariate Cox's proportional hazards regression model suggested that this 4-miRNA signature was an independent prognostic factor of other clinical parameters in patients with PAAD. Further pathway enrichment analyses revealed that the miRNAs in the 4-miRNA signature might regulate genes that affect focal adhesion, Wnt signaling pathway, and PI3K-Akt signaling pathway. Thus, these findings indicated that the 4-miRNA signature might be an effective independent prognostic biomarker in the prediction of PAAD patients' survival.  相似文献   

12.
Amount of peptidoglycan in cell walls of gram-negative bacteria.   总被引:3,自引:7,他引:3       下载免费PDF全文
The amount of diaminopimelic acid (Dap) in the cell wall of Escherichia coli was measured in two ways. A radiochemical method first described by us in 1985 (F. B. Wientjes, E. Pas, P. E. M. Taschner, and C. L. Woldringh, J. Bacteriol. 164:331-337, 1985) is based on the steady-state incorporation of [3H]Dap during several generations. Knowing the cell concentration and the specific activity of the [3H]Dap, one can calculate the number of Dap molecules per sacculus. The second method measures the Dap content chemically in sacculi isolated from a known number of cells. With both methods, a value of 3.5 x 10(6) Dap molecules per sacculus was obtained. Combined with electron microscopic measurements of the surface area of the cells, the data indicate an average surface area per disaccharide unit of ca. 2.5 nm2. This finding suggests that the peptidoglycan is basically a monolayered structure.  相似文献   

13.
Peptidoglycan (PG) is an essential, envelope‐fortifying macromolecule of eubacterial cell walls. It is a large polymer with multiple glycan strands interconnected by short peptide chains forming a sac‐like structure around cytoplasmic membrane. In most bacteria, the composition of the peptide chain is well‐conserved and distinctive; in E. coli, the peptide chain length varies from two to five amino acids with a tetrapeptide consisting of L‐alanine – D‐glutamic acid – meso‐diaminopimelic acid – D‐alanine. However, it is not known how bacteria conserve the composition and sequence of peptide chains of PG. Here, we find that a conserved open reading frame of unknown function, YfiH (renamed PgeF) contributes to the maintenance of peptide composition in E. coli. Using genetic, biochemical and mass spectrometrical analyses we demonstrate that absence of yfiH results in incorporation of non‐canonical amino acids, L‐serine or glycine in place of L‐alanine in PG sacculi leading to β‐lactam – sensitivity, lethality in mutants defective in PG remodelling or recycling pathways, altered cell morphology and reduced PG synthesis. yfiH orthologs from other Gram‐positive genera were able to compensate the absence of yfiH in E. coli indicating a conserved pathway in bacterial kingdom. Our results suggest editing/quality control mechanisms exist to maintain composition and integrity of bacterial peptidoglycan.  相似文献   

14.
The major industrial heap bioleaching processes are located in desert regions (mainly Chile and Australia) where fresh water is scarce and the use of resources with low water activity becomes an attractive alternative. However, in spite of the importance of the microbial populations involved in these processes, little is known about their response or adaptation to osmotic stress. In order to investigate the response to osmotic stress in these microorganisms, six species of acidophilic bacteria were grown at elevated osmotic strength in liquid media, and the compatible solutes synthesised were identified using ion chromatography and MALDI-TOF mass spectrometry. Trehalose was identified as one of, or the sole, compatible solute in all species and strains, apart from Acidithiobacillus thiooxidans where glucose and proline levels increased at elevated osmotic potentials. Several other potential compatible solutes were tentatively identified by MALDITOF analysis. The same compatible solutes were produced by these bacteria regardless of the salt used to produce the osmotic stress. The results correlate with data from sequenced genomes which confirm that many chemolithotrophic and heterotrophic acidophiles possess genes for trehalose synthesis. This is the first report to identify and quantify compatible solutes in acidophilic bacteria that have important roles in biomining technologies.  相似文献   

15.
Pancreatic cancer is the third leading cause of cancer-related mortalities and is characterized by rapid disease progression. Identification of novel therapeutic targets for this devastating disease is important. Phosphoenolpyruvate carboxykinase 1 (PCK1) is the rate-limiting enzyme of gluconeogenesis. The current study tested the expression and potential functions of PCK1 in pancreatic cancer. We show that PCK1 mRNA and protein levels are significantly elevated in human pancreatic cancer tissues and cells. In established and primary pancreatic cancer cells, PCK1 silencing (by shRNA) or CRISPR/Cas9-induced PCK1 knockout potently inhibited cell growth, proliferation, migration and invasion, and induced robust apoptosis activation. Conversely, ectopic overexpression of PCK1 in pancreatic cancer cells accelerated cell proliferation and migration. RNA-seq analyzing of differentially expressed genes (DEGs) in PCK1-silenced pancreatic cancer cells implied that DEGs were enriched in the PI3K-Akt-mTOR cascade. In pancreatic cancer cells, Akt-mTOR activation was largely inhibited by PCK1 shRNA, but was augmented after ectopic PCK1 overexpression. In vivo, the growth of PCK1 shRNA-bearing PANC-1 xenografts was largely inhibited in nude mice. Akt-mTOR activation was suppressed in PCK1 shRNA-expressing PANC-1 xenograft tissues. Collectively, PCK1 is a potential therapeutic target for pancreatic cancer.Subject terms: Pancreatic cancer, Oncogenes  相似文献   

16.
The specificity of antibodies directed against the peptidoglycan of gram-negative bacteria was studied. The peptidoglycans of Proteus vulgaris, Escherichia coli, Moraxella glucidolytica, Neisseria perflava, give identical precipitin reactions. By means of inhibition studies with various peptidoglycan subunits and synthetic peptides, it was shown that the antibodies are essentially directed against the peptide moiety of the peptidoglycan: L-Ala-D-Glu (L)-mesoA2pm-(L)-D-Ala, that the peptide reacts better with antibodies when it is not cross-linked, and that the C-terminal portion-meso-A2pm-D-Ala of the peptide is immunodominant. These results explain the immunological identity of the peptidoglycans of gram-negative bacteria, which possess the same peptide subunit. Only weak cross-reactivity was observed with the peptidoglycans of gram-positive bacteria (Streptococcus faecium, Micrococcus lysodeikticus, Corynebacterium poinsettiae) where meso-diaminopimelic acid is replaced by L-lysine or L-homoserine. However, the peptidoglycan of Bacillus megaterium which possesses the same peptide subunit as gram-negative bacteria, gives only a reaction of partial identity with these bacteria. This result suggests the presence on the peptidoglycan of gram-negative bacteria, of other undefined antigenic determinants.  相似文献   

17.
The role(s) in cell division of the Mycobacterium tuberculosis Rv0011c gene product, a homolog of the Streptomyces CrgA protein that is responsible for coordinating growth and cytokinesis in sporogenic aerial hyphae, is largely unknown. We show that an enhanced cyan fluorescent protein-M. tuberculosis CrgA (ECFP-CrgA(MT)) fusion protein is localized to the cell membrane, midcell, and cell pole regions in Mycobacterium smegmatis. Furthermore, the ECFP-CrgA(MT) fusion protein colocalized with FtsZ-enhanced yellow fluorescent protein (EYFP) in M. smegmatis. Bacterial two-hybrid assays indicated strong interactions of M. tuberculosis CrgA with FtsZ, FtsQ, and the class B penicillin-binding proteins, FtsI (PBPB) and PBPA. The midcell localization of CrgA(MT) was severely compromised under conditions of FtsZ depletion, which indicated that CrgA localizes to the midcell region after assembly of the FtsZ ring. M. tuberculosis cells with reduced CrgA levels were elongated and grew more slowly than wild-type cells, which indicated defects in cell division, whereas CrgA overproduction did not show growth defects. A M. smegmatis ΔcrgA strain exhibited a bulged cell morphology, elongated cells with a chain-like phenotype, cells with polar bulbous structures, and a modest growth defect. FtsZ and FtsI levels were not affected in cells producing altered levels of CrgA. Septal and membrane localization of GFP-FtsI was enhanced by CrgA overproduction and was diminished in a ΔcrgA strain, which indicates that one role of CrgA is to promote and/or stabilize FtsI localization. Overall, these data indicate that CrgA is a novel member of the cell division complex in mycobacteria and possibly facilitates septum formation.  相似文献   

18.
Three active-site cysteine L,D-transpeptidases can individually anchor the Braun lipoprotein to the Escherichia coli peptidoglycan. We show here that two additional enzymes of the same family form peptide bonds between the third residues of peptidoglycan stems, generating meso-DAP(3)-->meso-DAP(3) unusual cross-links. This activity partially replaces the D,D-transpeptidase activity of penicillin-binding proteins.  相似文献   

19.
20.
A series of tetrahydroisoquinoline-N-phenylamide derivatives were designed, synthesized, and tested for their relative binding affinities, and antagonistic activities against estrogen receptor (ER). Compound 1f (relative binding affinity, RBA=5) showed higher binding affinity than tamoxifen (RBA=1), a potent ER antagonist and currently being used for breast cancer therapy. Compound 1f also exerted optimal antagonistic activity against ER in reporter and cell proliferation assays. Interestingly, compound 1j, which only has a minor agonistic effect against ER, acted as a progesterone receptor (PR) antagonist and exerted agonistic activity against AP-1 through ER pathway. Our results show that these new compounds can be employed as leading pharmacophore for further development of potent selective ER and/or PR modulators or antagonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号