首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Epithelial cell shedding is a defence mechanism against infectious microbes that use these cells as an infection foothold and that eliminate microbes from infection foci by removing infected cells. Mycoplasma pneumoniae, a causative agent of respiratory infections, is known to adhere to and colonise the surface of ciliated airway epithelial cells; it produces a large amount of hydrogen peroxide, indicating its capability of regulating hydrogen peroxide‐induced infected cell detachment. In this study, we found that M. pneumoniae reduces exogenous hydrogen peroxide‐induced detachment of the infected cells from culture plates. This cell detachment occurred dependently of DNA damage‐initiated, poly (ADP‐ribose) polymerase 1 (PARP1)‐mediated cell death, or parthanatos. In cells infected with M. pneumoniae, exogenous hydrogen peroxide failed to induce DNA damage‐initiated poly (ADP‐ribose) (PAR) synthesis and concomitant increased cytoplasmic membrane rupture, both of which are biochemical hallmarks of parthanatos. The impairment of PAR synthesis was attributed to a reduction in the amount of cytosolic nicotinamide adenine dinucleotide (NAD), a substrate of PARP1, caused by M. pneumoniae. On the other hand, nonadherent mutant strains of M. pneumoniae showed a lower ability to reduce cell detachment than wild‐type strains, but the extent to which NAD was decreased in infected cells was comparable to that seen in the wild‐type strain. We found that NAD depletion could induce PARP1‐independent cell detachment pathways following stimulation with hydrogen peroxide and that M. pneumoniae could also regulate PARP1‐independent cell detachment in a cytoadhesion‐dependent manner. These results suggest that M. pneumoniae might regulate infected cell detachment induced by hydrogen peroxide that it produces itself, and such a mechanism may contribute to sustaining the bacterial infection.  相似文献   

2.
Neopterin and the reduced form, 7,8-dihydroneopterin (78NP), are pteridines released from macrophages when stimulated with γ-interferon in vivo. The role of 78NP in inflammatory response is unknown though neopterin has been used clinically as a marker of immune cell activation, due to its very fluorescent nature. Using red blood cells as a cellular model, we demonstrated that micromolar concentrations of 78NP can inhibit or reduce red blood cell haemolysis induced by 2,2′-azobis(amidinopropane)dihydrochloride (AAPH), hydrogen peroxide, or hypochlorite. One hundred μM 78NP prevented HOCl haemolysis using a high HOCl concentration of 5 μmole HOCl/107 RBC. Fifty μM 78NP reduced the haemolysis caused by 2 mM hydrogen peroxide by 39% while the same 78NP concentration completely inhibited haemolysis induced by 2.5 mM AAPH. Lipid peroxidation levels measured as HPLC-TBARS were not affected by addition of 78NP. There was no correlation between lipid oxidation and cell haemolysis suggesting that lipid peroxidation is not essential for haemolysis. Conjugated diene measurements taken after 6 and 12 hour exposure to hydrogen peroxide support the TBARS data. Gel electrophoresis of cell membrane proteins indicated 78NP might inhibit protein damage. Using dityrosine as an indicator of protein damage, we demonstrated 200 μM 78NP reduced dityrosine formation in H2O2/Fe++ treated red blood cell ghosts by 30%. HPLC analysis demonstrated a direct reaction between 78NP and all three oxidants. Two mM hydrogen peroxide oxidised 119 nM of 78NP per min while 1 mM AAPH only oxidised 50 nM 78NP/min suggesting that 78NP inhibition of haemolysis is not due to 78NP scavenging the primary initiating reactants. In contrast, the reaction between HOCl and 78NP was near instant. AAPH and hydrogen peroxide oxidised 78NP to 7,8-dihydroxanthopterin while hypochlorite oxidation produced neopterin. The cellular antioxidant properties of 78NP suggest it may have a role in protecting immune cells from free radical damage during inflammation.  相似文献   

3.
4.
Streptococcus pneumoniae (pneumococcus), the causative agent of several human diseases, possesses numerous virulence factors associated with pneumococcal infection and pathogenesis. Pneumolysin (PLY), an important virulence factor, is a member of the cholesterol‐dependent cytolysin family and has cytolytic activity. Sortase A (SrtA), another crucial pneumococcal virulence determinate, contributes greatly to the anchoring of many virulence‐associated surface proteins to the cell wall. In this study, epigallocatechin gallate (EGCG), a natural compound with little known antipneumococcal activity, was shown to directly inhibit PLY‐mediated haemolysis and cytolysis by blocking the oligomerization of PLY and simultaneously reduce the peptidase activity of SrtA. The biofilm formation, production of neuraminidase A (NanA, the pneumococcal surface protein anchored by SrtA), and bacterial adhesion to human epithelial cells (Hep2) were inhibited effectively when S. pneumoniae D39 was cocultured with EGCG. The results from molecular dynamics simulations and mutational analysis confirmed the interaction of EGCG with PLY and SrtA, and EGCG binds to Glu277, Tyr358, and Arg359 in PLY and Thr169, Lys171, and Phe239 in SrtA. In vivo studies further demonstrated that EGCG protected mice against S. pneumoniae pneumonia. Our results imply that EGCG is an effective inhibitor of both PLY and SrtA and that an antivirulence strategy that directly targets PLY and SrtA using EGCG is a promising therapeutic option for S. pneumoniae pneumonia.  相似文献   

5.
IgA1 proteases (IgA1P) from diverse pathogenic bacteria specifically cleave human immunoglobulin A1 (IgA1) at the hinge region, thereby thwarting protective host immune responses. Streptococcus pneumoniae (S. pneumoniae) IgA1P shares no sequence conservation with serine or cysteine types of IgA1Ps or other known proteins, other than a conserved HExxH Zn‐binding motif (1604‐1608) found in metalloproteases. We have developed a novel expression system to produce the mature S. pneumoniae IgA1P and we have discovered that this form is both attached to the bacterial cell surface and released in its full form. Our data demonstrate that the S. pneumoniae IgA1P comprises two distinct regions that associate to form an active metalloprotease, the first such example of a metalloprotease that can be split in vitro and recombined to form an active enzyme. By capitalizing on this novel domain architecture, we show that the N‐terminal region of S. pneumoniae IgA1P comprises the primary binding region for IgA1, although the C‐terminal region of S. pneumoniae IgA1P is necessary for cleavage of IgA1. Our findings lend insight into the protein domain architecture of the S. pneumoniae IgA1P and function of this important virulence factor for S. pneumoniae infection.  相似文献   

6.
The distribution of cysteine desulfhydrase activity in microorganisms was studied with intact cells. The enzyme activity was found mainly in strains belonging to Enterobacteriaceae, especially to genus Aerobacter (Enterobacter). Aerobacter cloacae IFO 12009 showed markedly high activity.

l-Cysteine was essential as an inducer of the enzyme formation, of which 0.2% in the medium is appropriate.

Intact cells of bacteria containing high cysteine desulfhydrase activity, prepared from broth cultured for 19hr, catalyzed the synthesis of l-cysteine from pyruvate, ammonia and hydrogen sulfide.  相似文献   

7.
Mycoplasma pneumoniae is the leading cause of bacterial community‐acquired pneumonia among hospitalised children in United States and worldwide. Community‐acquired respiratory distress syndrome (CARDS) toxin is a key virulence determinant of M. pneumoniae. The N‐terminus of CARDS toxin exhibits ADP‐ribosyltransferase (ADPRT) activity, and the C‐terminus possesses binding and vacuolating activities. Thiol‐trapping experiments of wild‐type (WT) and cysteine‐to‐serine‐mutated CARDS toxins with alkylating agents identified disulfide bond formation at the amino terminal cysteine residues C230 and C247. Compared with WT and other mutant toxins, C247S was unstable and unusable for comparative studies. Although there were no significant variations in binding, entry, and retrograde trafficking patterns of WT and mutated toxins, C230S did not elicit vacuole formation in intoxicated cells. In addition, the ADPRT domain of C230S was more sensitive to all tested proteases when compared with WT toxin. Despite its in vitro ADPRT activity, the reduction of C230S CARDS toxin‐mediated ADPRT activity‐associated IL‐1β production in U937 cells and the recovery of vacuolating activity in the protease‐released carboxy region of C230S indicated that the disulfide bond was essential not only to maintain the conformational stability of CARDS toxin but also to properly execute its cytopathic effects.  相似文献   

8.
Summary X-ray irradiation of aqueous ferredoxin solutions isolated fromClostridium pasteurianum causes a rapid destruction of the ferredoxin molecule.The destruction is manifested by the decrease of the absorption at 390 nm, the liberation of ferric iron and hydrogen sulfide, and concommittant loss of biological activity in the phosphoroclastic reaction ofC. pasteurianum. The biological activity decreases parallel with the iron liberation, and was found to be dose and pH dependent.The yield of biological inactivation (G-value) and the yield of iron liberation showed the same value of 0.8. OH-radical scavengers like p-amino-benzoic acid and cysteine in low concentrations of 2×10–3 M, protect ferredoxin effectively against radiation, suggesting that OH-radicals are mainly responsible for the inactivation.  相似文献   

9.
In Escherichia coli, sulfur in iron-sulfur clusters is primarily derived from l-cysteine via the cysteine desulfurase IscS. However, the iron donor for iron-sulfur cluster assembly remains elusive. Previous studies have shown that, among the iron-sulfur cluster assembly proteins in E. coli, IscA has a unique and strong iron-binding activity and that the iron-bound IscA can efficiently provide iron for iron-sulfur cluster assembly in proteins in vitro, indicating that IscA may act as an iron chaperone for iron-sulfur cluster biogenesis. Here we report that deletion of IscA and its paralog SufA in E. coli cells results in the accumulation of a red-colored cysteine desulfurase IscS under aerobic growth conditions. Depletion of intracellular iron using a membrane-permeable iron chelator, 2,2′-dipyridyl, also leads to the accumulation of red IscS in wild-type E. coli cells, suggesting that the deletion of IscA/SufA may be emulated by depletion of intracellular iron. Purified red IscS has an absorption peak at 528 nm in addition to the peak at 395 nm of pyridoxal 5′-phosphate. When red IscS is oxidized by hydrogen peroxide, the peak at 528 nm is shifted to 510 nm, which is similar to that of alanine-quinonoid intermediate in cysteine desulfurases. Indeed, red IscS can also be produced in vitro by incubating wild-type IscS with excess l-alanine and sulfide. The results led us to propose that deletion of IscA/SufA may disrupt the iron delivery for iron-sulfur cluster biogenesis, therefore impeding sulfur delivery by IscS, and result in the accumulation of red IscS in E. coli cells.  相似文献   

10.
Streptococcus pneumoniae (S. pneumoniae) is a major causative agent of respiratory disease in patients and can cause respiratory distress and other symptoms in severe cases. Pneumolysin (PLY) is a pore-forming toxin that induces host tissue injury and inflammatory responses. Sortase A (SrtA), a catalytic enzyme that anchors surface-associated virulence factors, is critical for S. pneumoniae virulence. Here, we found that the active ingredient of the Chinese herb Scutellaria baicalensis, wogonin, simultaneously inhibited the haemolytic activity of PLY and SrtA activity. Consequently, wogonin decreased PLY-mediated cell damage and reduced SrtA-mediated biofilm formation by S. pneumoniae. Furthermore, our data indicated that wogonin did not affect PLY expression but directly altered its oligomerization, leading to reduced activity. Furthermore, the analysis of a mouse pneumonia model further revealed that wogonin reduced mortality in mice infected with S. pneumoniae laboratory strain D39 and S. pneumoniae clinical isolate E1, reduced the number of colony-forming units in infected mice and decreased the W/D ratio and levels of the inflammatory factors TNF-α, IL-6 and IL-1β in the lungs of infected mice. Thus, wogonin reduces S. pneumoniae pathogenicity by inhibiting the dual targets PLY and SrtA, providing a treatment option for S. pneumoniae infection.  相似文献   

11.
Glycerol is one of the few carbon sources that can be utilized by Mycoplasma pneumoniae. Glycerol metabolism involves uptake by facilitated diffusion, phosphorylation, and the oxidation of glycerol 3-phosphate to dihydroxyacetone phosphate, a glycolytic intermediate. We have analyzed the expression of the genes involved in glycerol metabolism and observed constitutive expression irrespective of the presence of glycerol or preferred carbon sources. Similarly, the enzymatic activity of glycerol kinase is not modulated by HPr-dependent phosphorylation. This lack of regulation is unique among the bacteria for which glycerol metabolism has been studied so far. Two types of enzymes catalyze the oxidation of glycerol 3-phosphate: oxidases and dehydrogenases. Here, we demonstrate that the enzyme encoded by the M. pneumoniae glpD gene is a glycerol 3-phosphate oxidase that forms hydrogen peroxide rather than NADH2. The formation of hydrogen peroxide by GlpD is crucial for cytotoxic effects of M. pneumoniae. A glpD mutant exhibited a significantly reduced formation of hydrogen peroxide and a severely reduced cytotoxicity. Attempts to isolate mutants affected in the genes of glycerol metabolism revealed that only the glpD gene, encoding the glycerol 3-phosphate oxidase, is dispensable. In contrast, the glpF and glpK genes, encoding the glycerol facilitator and the glycerol kinase, respectively, are essential in M. pneumoniae. Thus, the enzymes of glycerol metabolism are crucial for the pathogenicity of M. pneumoniae but also for other essential, yet-to-be-identified functions in the M. pneumoniae cell.Mycoplasma pneumoniae causes infections of the upper and lower respiratory tracts. These bacteria are responsible for a large fraction of community-acquired pneumonias. Although usually harmless for adult patients, M. pneumoniae may cause severe disease in children or elderly people. In addition, M. pneumoniae is involved in extrapulmonary complications such as pediatric encephalitis and erythema multiforme (for reviews, see references 15, 21, and 34).M. pneumoniae and its relatives, the Mollicutes, are all characterized by the lack of a cell wall and a very close adaptation to a life within a eukaryotic host. This close adaptation is reflected by degenerative genome evolution that resulted in an extreme genome reduction. As a result, the Mollicutes are the organisms that are capable of independent life with the smallest known genome. M. pneumoniae has a genome of 816 kb and encodes only 688 proteins (18). This genome reduction is taken even further in the close relative Mycoplasma genitalium, which has only 482 protein-coding genes (18). Thus, the analysis of the Mollicutes allows us to study a minimal form of natural life. This question has recently attracted much interest and resulted in the determination of the essential gene sets of M. pneumoniae, M. genitalium, and, more recently, Mycoplasma pulmonis (6, 20). In M. genitalium, with the most reduced genomes, only 100 out of the 482 protein-coding genes are dispensable, suggesting that the remaining 382 genes form the essential gene set (7).Reductive genome evolution in M. pneumoniae is still under way: the genes for the utilization of mannitol as a carbon source seem to be present in M. pneumoniae; however, this substrate cannot be used by the bacteria. M. genitalium, which is further advanced in genome reduction, has lost the genes for mannitol transport and oxidation. It was therefore suggested that the genes for mannitol utilization in M. pneumoniae either are not expressed or encode inactive proteins (12).In M. pneumoniae as well as in other Mollicutes, pathogenicity is closely linked to carbon metabolism (13). M. pneumoniae can use glucose, fructose, and glycerol as the only carbon sources (12). Studies with Mycoplasma mycoides revealed that glycerol metabolism has a major impact on the pathogenicity of these bacteria. Oxidation of glycerol involves the glycerol 3-phosphate oxidase, which produces hydrogen peroxide rather than NADH2, which is generated by the glycerol 3-phosphate dehydrogenase in most other bacteria (28). In addition to the induction of autoimmune responses, the formation of hydrogen peroxide is the only established mechanism by which mycoplasmas cause damage to their hosts (31, 34). Pathogenic strains of M. mycoides possess a highly active ABC transport system for glycerol in addition to the ubiquitous glycerol facilitator (33). The efficient formation of hydrogen peroxide by the membrane-bound glycerol 3-phosphate oxidase is the major virulence factor of the highly pathogenic strains of M. mycoides (28).M. pneumoniae possesses the complete set of genes for glycerol utilization, and the bacteria do indeed use this carbon source (12). The first component in glycerol metabolism is the glycerol facilitator encoded by the glpF gene. The transported glycerol is then phosphorylated by the glycerol kinase (product of glpK), and glycerol 3-phosphate is subsequently oxidized to dihydroxyacetone phosphate, a glycolytic intermediate. The relevant enzyme is annotated as glycerol 3-phosphate dehydrogenase (encoded by the gene glpD) in M. pneumoniae (17).In all organisms studied so far, glycerol metabolism is under dual control: the genes involved in glycerol utilization are expressed only if glycerol or glycerol 3-phosphate is present in the medium, and they are not expressed in the presence of glucose, the preferred carbon source (3, 4). This second mode of regulation, carbon catabolite repression, involves two distinct mechanisms in the Firmicutes, from which the Mollicutes evolved. In the presence of preferred sugars, the CcpA repressor protein binds in the promoter regions of glycerol utilization genes and prevents their expression. Moreover, the molecular inducer of the system, glycerol 3-phosphate, is formed only in the absence of glucose. This results from the low activity of the glycerol kinase. This enzyme is activated upon phosphorylation by HPr, a protein of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). HPr can phosphorylate other proteins only in the absence of glucose, thus providing a link between glucose availability, the activity of the glycerol kinase, and the induction of the glycerol utilization genes (3). Nothing is known about the regulation of glycerol utilization in any member of the Mollicutes; however, regulatory events seem to be rare in these organisms due to the lack of regulatory proteins, among them CcpA.In this work, we studied the mechanisms of glycerol utilization in M. pneumoniae, its regulation, and its contribution to cytotoxicity. We demonstrate constitutive expression of the genes for glycerol utilization in M. pneumoniae. As observed in M. mycoides, glycerol 3-phosphate oxidation involves the formation of hydrogen peroxide and is important for damaging the host cells.  相似文献   

12.
The persulfide sulfur formed on an active site cysteine residue of pyridoxal 5′-phosphate-dependent cysteine desulfurases is subsequently incorporated into the biosynthetic pathways of a variety of sulfur-containing cofactors and thionucleosides. In molybdenum cofactor biosynthesis, MoeB activates the C terminus of the MoaD subunit of molybdopterin (MPT) synthase to form MoaD-adenylate, which is subsequently converted to a thiocarboxylate for the generation of the dithiolene group of MPT. It has been shown that three cysteine desulfurases (CsdA, SufS, and IscS) of Escherichia coli can transfer sulfur from l-cysteine to the thiocarboxylate of MoaD in vitro. Here, we demonstrate by surface plasmon resonance analyses that IscS, but not CsdA or SufS, interacts with MoeB and MoaD. MoeB and MoaD can stimulate the IscS activity up to 1.6-fold. Analysis of the sulfuration level of MoaD isolated from strains defective in cysteine desulfurases shows a largely decreased sulfuration level of the protein in an iscS deletion strain but not in a csdA/sufS deletion strain. We also show that another iscS deletion strain of E. coli accumulates compound Z, a direct oxidation product of the immediate precursor of MPT, to the same extent as an MPT synthase-deficient strain. In contrast, analysis of the content of compound Z in ΔcsdA and ΔsufS strains revealed no such accumulation. These findings indicate that IscS is the primary physiological sulfur-donating enzyme for the generation of the thiocarboxylate of MPT synthase in MPT biosynthesis.  相似文献   

13.
Chloroperoxidase (CPO) from Caldariomyces fumago (E.C. 1.11.1.10) is able to enantioselectively oxidize various sulfides to the corresponding (R)‐enantiomer of the sulfoxides. For these oxidations the enzyme requires an oxidant. Most commonly, tert‐butyl hydroperoxide (TBHP) and hydrogen peroxide are used. As it is known that these oxidants inactivate the enzyme, the enzymatic reaction was combined with the electrochemical in situ generation of hydrogen peroxide. As substrates for this combination of an enzymatic and an electrochemical reaction methyl p‐tolyl sulfide, 1‐methoxy‐4‐(methylthio)benzene and N‐MOC‐L ‐methionine methyl ester were used to carry out batch experiments.  相似文献   

14.
Cysteine is implicated in important biological processes. It is synthesized through two different pathways. Cystathionine β-synthase and cystathionine γ-lyase participate in the reverse transsulfuration pathway, while serine acetyltransferase and cysteine synthase function in the de novo pathway. Two evolutionarily related pyridoxal 5′-phosphate-dependent enzymes, cystathionine β-synthase TtCBS1 (TTHERM_00558300) and cysteine synthase TtCSA1 (TTHERM_00239430), were identified from a freshwater protozoan Tetrahymena thermophila. TtCbs1 contained the N-terminal heme binding domain, catalytic domain, and C-terminal regulatory domain, whereas TtCsa1 consisted of two α/β domains. The catalytic core of the two enzymes is similar. TtCBS1 and TtCSA1 showed high expression levels in the vegetative growth stage and decreased during the sexual developmental stage. TtCbs1 and TtCsa1 were localized in the cytoplasm throughout different developmental stages. His-TtCbs1 and His-TtCsa1 were expressed and purified in vitro. TtCbs1 catalyzed the canonical reaction with the highest velocity and possessed serine sulfhydrylase activity. TtCsa1 showed cysteine synthase activity with high Km for O-acetylserine and low Km for sulfide and also had serine sulfhydrylase activity toward serine. Both TtCbs1 and TtCsa1 catalyzed hydrogen sulfide producing. TtCBS1 knockdown and TtCSA1 knockout mutants affected cysteine and glutathione synthesis. TtCbs1 and TtCsa1 are involved in cysteine synthesis through two different pathways in T. thermophila.  相似文献   

15.
Sulfide is a natural, widely distributed, poisonous substance, and sulfide:quinone oxidoreductase (SQR) is responsible for the initial oxidation of sulfide in mitochondria. In this study, we examined the response of SQR to sulfide exposure (25, 50, and 150 μM) at mRNA, protein, and enzyme activity levels in the body wall and hindgut of the echiuran worm Urechis unicinctus, a benthic organism living in marine sediments. The results revealed SQR mRNA expression during sulfide exposure in the body wall and hindgut increased in a time- and concentration-dependent manner that increased significantly at 12 h and continuously increased with time. At the protein level, SQR expression in the two tissues showed a time-dependent relationship that increased significantly at 12 h in 50 μM sulfide and 6 h in 150 μM, and then continued to increase with time while no significant increase appeared after 25 μM sulfide exposure. SQR enzyme activity in both tissues increased significantly in a time-dependent manner after 50 μM sulfide exposure. We concluded that SQR expression could be induced by sulfide exposure and that the two tissues studied have dissimilar sulfide metabolic patterns. A U. unicinctus sulfide-induced detoxification mechanism was also discussed.  相似文献   

16.
Catalases are the most important enzymatic systems used to degrade hydrogen peroxide (H2O2) into water and oxygen, thereby lowering intracellular hydrogen peroxide levels. Entomopathogenic fungi display increased catalase activity during germination and growth, which is necessary to counteract the hyperoxidant state produced by oxidative metabolism. We studied the influence of five different hydrocarbons on catalase production by Lecanicillium muscarium to determine the importance of catalase induction in fungal germination, stress tolerance and virulence. Conidia produced by colonies grown on different hydrocarbons showed higher rates of catalase activity compared to the control and the catalase activity of conidia produced on n-octacosane was three times higher than the activity of the control. This increase in catalase activity was accompanied by a higher level of resistance to exogenous hydrogen peroxide and a reduction in the germination time. Our study has helped to identify that increased catalase activity improves the germination and tolerance to different antioxidant stress response of L. muscarium.  相似文献   

17.
Mycoplasma hyopneumoniae is the causative agent of enzootic pneumonia. In our previous work, we reconstructed the metabolic models of this species along with two other mycoplasmas from the respiratory tract of swine: Mycoplasma hyorhinis, considered less pathogenic but which nonetheless causes disease and Mycoplasma flocculare, a commensal bacterium. We identified metabolic differences that partially explained their different levels of pathogenicity. One important trait was the production of hydrogen peroxide from the glycerol metabolism only in the pathogenic species. Another important feature was a pathway for the metabolism of myo‐inositol in M. hyopneumoniae. Here, we tested these traits to understand their relation to the different levels of pathogenicity, comparing not only the species but also pathogenic and attenuated strains of M. hyopneumoniae. Regarding the myo‐inositol metabolism, we show that only M. hyopneumoniae assimilated this carbohydrate and remained viable when myo‐inositol was the primary energy source. Strikingly, only the two pathogenic strains of M. hyopneumoniae produced hydrogen peroxide in complex medium. We also show that this production was dependent on the presence of glycerol. Although further functional tests are needed, we present in this work two interesting metabolic traits of M. hyopneumoniae that might be directly related to its enhanced virulence.  相似文献   

18.

Background  

Streptococcus pneumoniae is the leading cause of community-acquired pneumonia. Previously, using comparative genomic analyses, 13 regions of genomic plasticity have been identified in the S. pneumoniae genome. These "Regions of Diversity" (RDs) accounted for half the genomic variation observed amongst all pneumococci tested, moreover, were determined to encode a variety of putative virulence factors. To date, genes within 5 RDs have been unequivocally demonstrated to contribute to S. pneumoniae virulence. It is unknown if the remaining RDs also contribute to virulence.  相似文献   

19.
20.
Proteases secreted by pathogens have been shown to be important virulence factors modifying plant immunity, and cysteine proteases have been demonstrated to participate in different pathosystems. However, the virulence functions of the cysteine proteases secreted by Phytophthora parasitica are poorly understood. Using a publicly available genome database, we identified 80 cysteine proteases in P. parasitica, 21 of which were shown to be secreted. Most of the secreted cysteine proteases are conserved among different P. parasitica strains and are induced during infection. The secreted cysteine protease proteins PpCys44/45 (proteases with identical protein sequences) and PpCys69 triggered cell death on the leaves of different Nicotiana spp. A truncated mutant of PpCys44/45 lacking a signal peptide failed to trigger cell death, suggesting that PpCys44/45 functions in the apoplastic space. Analysis of three catalytic site mutants showed that the enzyme activity of PpCys44/45 is required for its ability to trigger cell death. A virus-induced gene silencing assay showed that PpCys44/45 does not induce cell death on NPK1 (Nicotiana Protein Kinase 1)-silenced Nicotiana benthamiana plants, indicating that the cell death phenotype triggered by PpCys44/45 is dependent on NPK1. PpCys44- and PpCys45-deficient double mutants showed decreased virulence, suggesting that PpCys44 and PpCys45 positively promote pathogen virulence during infection. PpCys44 and PpCys45 are important virulence factors of P. parasitica and trigger NPK1-dependent cell death in various Nicotiana spp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号