首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Seed inoculation with Rhizobium and soil inoculation withGlomus fasciculatum increased nodulation, nitrogen and phosphorus concentration in plants and yield of chickpea (Cicer arietinum) var. BG 212 in pots containing unsterilized soil especially with 50kgP2O5 ha−1 in the form of superphosphate. Inoculation with Rhizobium orG. fasciculatum separately or in combination significantly increased the N2 fixed in straw and grain than uninoculated controls as determined by15N atom percent excess of plants grown in soil amended with labelled ammonium sulphate (15NH4)2SO4) at the rate of 20kg N ha−1. These increases were most pronounced when P was applied at 50kgP2O5 ha−1.  相似文献   

2.
3.
Summary Developing and senescing chickpea (Cicer arietinum L.) nodules formed byRhizobium sp. (Cicer) CC 1192 have been shown by light and electron microscopy to have general morphological and ultrastructural features that are characteristic of indeterminate nodules. These features included the presence of persistent meristematic tissue at the distal ends of the multi-lobed nodules, and a gradient of cells at different stages of development towards the proximal point of attachment of the nodules to the parent root. The cytoplasm of infected cells in the nitrogen-fixing region of the nodules was densely packed with symbiosomes, most of which contained a single bacteroid. Infection threads containing bacteria were noted in invaded cells from the nitrogen-fixing region of the nodules. Other features that were observed in chickpea nodules included the presence of electron-dense occlusions in intercellular spaces in the nitrogen-fixing region, and plasmodesmata that connected infected cells with other infected cells and with uninfected cells. No poly--hydroxybutyrate granules were noted in the bacteroids. In later stages of development, infected cells became enlarged and highly vacuolated, and eventually lost their contents. Uninfected cells in the central region were smaller than infected cells and were also highly vacuolated. Some of the degenerative processes that take place in senescing bacteroids were noted.  相似文献   

4.
Ascochyta blight [Ascochyta rabiei (Pass.) Lab.] is the most destructive disease of chickpea (Cicer arietinum L.), but it can be managed effectively by the use of resistant cultivars. Therefore, a breeding programme was initiated during 1977–78 at ICARDA, Syria, to breed blight-resistant, high-yielding chickpeas with other desirable agronomic traits. Crosses were made in main season at Tel Hadya, Syria, and the F1s were grown in the off season at Terbol, Lebanon. The F2, F4 and F5 generations were grown in a blight nursery in the main season where blight epidemic was artificially created. The plants and progenies were scored for blight resistance and other traits. The F3 and F6 generations were grown in the off season under normal day length to eliminate late-maturing plants. The pedigree method of breeding was followed initially, but was later replaced by the F4-derived family method. The yield assessment began with F7 lines, first at ICARDA sites and later internationally. A total of 1584 ascochyta blight-resistant chickpea lines were developed with a range of maturity, plant height, and seed size not previously available to growers in the blight-endemic areas in the Mediterranean region. These included 92 lines resistant to six races of the ascochyta pathogen, and 15 large-seeded and 28 early maturity lines. New cultivars produced 33% more seed yield than the original resistant sources. The yield of chickpea declined by 340 kg ha-1, with an increase in blight severity by one class on a 1–9 scale, reaching zero yield with the 8 and 9 classes. Development of blight-resistant lines made the introduction of winter sowing possible in the Mediterranean region with the prospect of doubling chickpea production. Twenty three cultivars have been released so far in 11 countries.Joint contribution from ICARDA and ICRISAT. ICRISAT Journal Article no. JA 1886.  相似文献   

5.
The efficacy of benzyladenine (BA) to induce multiple shoots from seed explants of chickpea (Cicer arietinum L.) was assessed. Shoot differentiation was influenced by the type of seed explant, genotype and concentration of BA. Orientation of the explant also strongly influenced the shoot regeneration response. The optimum BA concentration for shoot/shoot bud regeneration was genotype dependent. Two types of BA-induced response were observed: (1) at less than 7.5 gm BA, direct shoot differentiation (2 to 4-cm-long shoots) was observed within 30 days; (2) at higher BA concentrations (75–100 m), shoot/shoot bud differentiation was achieved in 45–90 days. A high BA concentration inhibited subsequent rooting of shoots. Roots, however, could be easily induced on shoots derived from <12.5 m BA. Following transfer to soil, 80% of the regenerants developed into morphologically normal and fertile plants.Abbreviations BA Benzyladenine  相似文献   

6.
A glasshouse experiment was conducted to investigate the effect of soil pH on chickpea (Cicer arietinum) tolerance to isoxaflutole applied pre-emergence at 0, 75 (recommended rate) and 300 g a.i. ha−1. For this study, the variables examined were two desi chickpea genotypes (97039-1275 as a tolerant line and 91025-3021 as a sensitive line) and four pH levels (5.1, 6.9, 8.1, and 8.9). The results demonstrated differential tolerances among chickpea genotypes to isoxaflutole at different rates and soil pH levels. Isoxaflutole applied pre-emergence resulted in increased phytotoxicity with increases in soil pH and herbicide rate. Even the most tolerant chickpea genotype was damaged when exposed to higher pH and herbicide rates, as indicated by increased leaf chlorosis and significant reductions in plant height, and shoot and root dry weight. The effects were more severe with the sensitive genotype. The susceptibility of chickpea to this herbicide depends on genotype and soil pH which should be taken into account in breeding new lines, and in the agronomy of chickpea production.  相似文献   

7.
Effect of salinity on antioxidant responses of chickpea seedlings   总被引:1,自引:0,他引:1  
The changes in the activity of antioxidant enzymes, like superoxide dismutase, ascorbate peroxidase, catalase and glutathione reductase, and growth parameters such as length, fresh and dry weight, proline and H2O2 contents, chlorophyll fluorescence (Fv/Fm), quantum yield of PSII and the rate of lipid peroxidation in terms of malondialdehyde in leaf and root tissues of a chickpea cultivar (Cicer arietinum L. cv. Gökçe) under salt treatment were investigated. Plants were subjected to 0.1, 0.2 and 0.5 M NaCl treatments for 2 and 4 days. Compared to controls, salinity resulted in the reduction of length and of the fresh and dry weights of shoot and root tissues. Salinity caused significant (< 0.05) changes in proline and MDA levels in leaf tissue. In general, a dose-dependent decrease was observed in H2O2 content, Fv/Fm and quantum yield of photosynthesis under salt stress. Leaf tissue extracts exhibited three activity bands, of which the higher band was identified as MnSOD and the others as FeSOD and Cu/ZnSOD. A significant enhancement was detected in the activities of Cu/ZnSOD and MnSOD isozymes in both tissues. APX and GR activities exhibited significant increases (< 0.05) in leaf tissue under all stress treatments, whereas no significant change was observed in root tissue. The activity of CAT was significantly increased under 0.5 M NaCl stress in root tissue, while its activity was decreased in leaf tissue under 0.5 M NaCl stress for 4 days. These results suggest that CAT and SOD activities play an essential protective role against salt stress in chickpea seedlings.  相似文献   

8.
Summary Six crosses were investigated using combining ability and generation mean analyses for reaction to cold tolerance in chickpea (Cicer arietinum L.). The combining ability variances revealed the significance of both additive and nonadditive gene effects, with preponderance of additive gene effects. The generation mean analysis revealed the presence of genie interactions in addition to additive and dominance gene effects. Among the interactions, additive×additive and dominance×dominance with duplicate epistasis were present. Cold tolerance was dominant over susceptibility to cold. Selection for cold tolerance would be more effective if dominance and epistatic effects were reduced after a few generations of selfing.Joint contribution from ICARDA and ICRISAT (International Crops Research Institute for the Semi-Arid Tropics), Patancheru P.O., A.P. 502 324, India. ICRISAT JA No. 1239.  相似文献   

9.
High nodulating (HN) selections of the cultivars ICC 4948 and ICC 5003 had the highest nodule number and nodule dry mass followed by low nodulating (LN) selections of the same cultivar. Both non-nodulating (NN) selections of cv. ICC 4993 and ICC 4918 did not show any nodule. Using N-difference method the HN selection of cv. 1CC 4948 was able to meet 73 % of its demand of N through biological fixation of N2 [P(fix)], while 27 % of N demand was met by uptake from the soil, whereas its LN selection was able to meet only 54 % of its demand of N through biological fixation of N2. Similarly in cv. ICC 5003 HN and LN selections the P(fix) was 76 and 64 %, respectively. Fast chlorophyll (Chl) fluorescence transient data analysis showed that performance index PI(abs) was 62.0 in cv. ICC 4948 HN selection and 44.5 in its respective LN selections. Corresponding values for cv. ICC 5003 were 32.4 and 28.4. In NN selections of ICC 4993 and ICC 4918 it was 12.6 and 30.7, respectively. Structure function index of the plants SFI(abs) and driving force for photosynthesis (DF) were highest in the HN selections followed by LN selections and lowest in the NN selections. The total uptake of N by chickpea plants was significantly and positively correlated with the density of reaction centres ABS/CS0, TR0/CS0, and DI0/CSM, whereas total N uptake by chickpea seeds was significantly positively correlated with N and TR0/CS0. The percentage of P(fix) was highly significantly positively correlated with N, the so-called turnover number which indicates how many times QA has been reduced in the time span from 0 to tFmax and TR0/CS0. Fast Chl a fluorescence measurement can be used as a model system to assess the N fixation ability in chickpea.  相似文献   

10.
Ohwaki  Y.  Sugahara  K. 《Plant and Soil》1993,155(1):473-476
Differences in responses to iron deficiency between two chickpea cultivars, NP-62 and K-850, were examined. The apical leaves of NP-62 quickly showed symptoms of iron-deficiency chlorosis when grown on an iron-free medium. By contrast, K-850 showed no visible symptoms on the same medium. Iron contents of the apical leaves of these two cultivars were similar during the first 7 days after they were transferred to the iron-free medium in spite of a marked difference in root-associated Fe3+-reduction activity. The susceptibility to iron-deficiency chlorosis observed in NP-62 was not attributable to the poor Fe3+-reduction activity of roots but to the inefficient utilization of iron within leaves under conditions when the supply of iron was limited.  相似文献   

11.
In vitro regeneration in chickpea (Cicer arietinum L.) was achieved by direct culture of mature seeds on Murashige and Skoog (MS) medium supplemented with either N-phenyl-N(-1,2,3-thidiazol-5-yl) urea (thidiazuron, TDZ) or N6-benzylaminopurine (BAP). Multiple shoots formed de novo without an intermediary callus phase at the cotyledonary notch region of the seedlings within 2 to 3 weeks of culture initiation. TDZ was found to be more effective compared to BAP as an inductive signal of regeneration. The former induced multiple shoot formation at all the concentrations tested (1 M to 100 M), although, maximum morphogenic response was observed at 10 M concentration. Addition of naphthaleneacetic acid (NAA) alone or in combination with BAP to the MS medium failed to invoke a similar response. When the TDZ supplemented medium was amended with L-proline, the resultant regenerants were mostly somatic embryos. Histological investigations confirmed the switch in the regeneration pathway from directly formed adventitious shoots to embryogenesis. For obtaining plantlets, adventitious shoots were rooted on MS medium supplemented with 2.5 M NAA; somatic embryos were germinated and established on MS medium. Normal plants were regenerated from both adventitious shoots and somatic embryos and transferred to soil.Abbreviations BAP 6-benzylaminopurine - MS Murashige and Skoog [14] basal medium - NAA naphthaleneacetic acid - TDZ thidiazuron [N-phenyl-N(-1,2,3,-thidiazol-5-yl)-urea]  相似文献   

12.
For the purpose of developing an in vitro regeneration system for chickpea (Cicer arietinum L.), an important food legume, immature cotyledons approximately 5 mm long were excised from developing embryos and cultured on B5 basal medium supplemented with 1.5% sucrose and various growth regulator combinations. Only non-morphogenic callus was formed in response to concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D), naphthaleneacetic acid (NAA) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) previously reported to induce somatic embryogenesis on immature soybean cotyledons. However, 4.6, 13.7, and 45.6 M zeatin induced formation of white, cotyledon-like structures (CLS) at the proximal end of immature cotyledons placed with adaxial surface facing the agar medium. No morphogenesis, or occasional formation of fused, deformed CLS, was observed when zeatin was replaced with kinetin or 6-benzyladenine, respectively. The highest response frequency, 64% of explants forming CLS, was induced by 13.7 M zeatin plus 0.2 M indole-acetic acid (IAA). Within 20–40 days culture on zeatin, shoots formed at the base of CLS on approximately 50% of CLS-bearing explants, and proliferated upon subsequent transfer to basal medium with 4.4 M BA or 4.6 M kinetin. This regeneration system may be useful for genetic transformation of chickpea.  相似文献   

13.
Summary Direct somatic embryo formation and plantlet regeneration was achieved from immature leaflets of chickpea (Cicer arietinum L.). Optimal somatic embryogenesis was obtained when immature leaflets were exposed to media supplemented with 15 μM 2,4-dichlorophenoxyacetic acid (2,4-D) for 7 d, to 2000 μM 2,4-D for 3 d, and to 50 μM 2,4-D for 10 d, followed by transfer onto Murashige and Skoog (MS) basal medium. Exposure of explants to high 2,4-D levels (200–2000 μM) for 3 d produced bottle-shaped embryos, while exposure to low 2,4-D levels (<50 μM) and 50–2000 μM for 10 d produced spherical-shaped embryos. Two percent of embryos converted into plants upon culture on MS medium containing 15 μM gibberellic acid and 1 μM 3-indolebutyric acid. All regenerated plants were phenotypically normal.  相似文献   

14.
A reproducible and efficient transformation method was developed for Desi and Kabuli chickpeas (Cicer arietinum L.) using germinated seedlings as sources of explants. Slices derived from plumules were the most efficient at generating transformed shoots. The AGL1 Agrobacterium-treated explants were first incubated on thidiazuron-containing media, then selected using phosphinothricin. Resistant shoots were successfully transferred to soil either by grafting or in vitro rooting. In experiments each taking 4–9 months, a total of 41 confirmed transformed lines were created using embryo axis slices as source explants, giving a transformation frequency of 5.1%. Southern analysis and histochemical and leaf painting assays demonstrated integration and expression of the transgenes in the initial transformants and two generations of progeny.  相似文献   

15.
A standard pachytene karyotype of chickpea (Cicer arietinum L.) is presented for the first time. Individual pachytene chromosomes were identified and described in detail. An idiogram was prepared on the basis of chromosome length, arm ratio, and distribution of heterochromatin and euchromatin. Chickpea pachytene chromosomes belong to the differentiated type with darker staining heterochromatin proximal to and lighter staining euchromatin distal to the centromeres. Chromosomes were numbered from 1 to 8 following a descending order of length. The total length of the chromosome complement at pachytene was 335.33 , and chromosome size ranged from 58.05 to 30.53 .  相似文献   

16.
Scope for genetic manipulation of mineral acquisition in chickpea   总被引:1,自引:1,他引:0  
Nutrient acquisition in chickpea needs to be efficient, because it is mainly grown as a post-rainy season, rainfed crop, and generally on soils inferior in physical characteristics and poor in fertility. Nutrient deficiencies have been reported to cause yield losses of varying magnitude in chickpea, e.g., 22–50% due to iron (Fe), around 10% due to sub-optimal nodulation and hence nitrogen (N) deficiency, 29–45% due to phosphorus (P), up to 100% due to boron (B), and 16-30% due to sulphur (S). Yield losses due to salinity are equally large but are difficult to estimate because of its heterogeneous occurrence. In chickpea, genotypic differences in morpho-physiological (including root size) and functional (exudates) root traits, and in nodulation capacity for increased nitrogen fixation have been identified. Genotypic differences in response to application of Fe, B and zinc (Zn) have also been found among chickpea genotypes. A drought tolerant chickpea genotype ICC 4958, which has a relatively large root system, acquired more P than other genotypes during the vegetative period in a pot experiment at ICRISAT. The recent thrust on identifying QTLs for root size should facilitate progress in incorporating useful root traits through marker assisted selection in desirable agronomic backgrounds. Selection for nodulation capacity in released cultivars has resulted in high nodulating chickpea genotypes that produced 10% higher yield than the control varieties. Information on targeted crop improvement for higher nutrient-use efficiency for P, S, Zn, B and Fe is not readily available. Methods to screen for tolerance to salinity are available, but sufficiently high levels of tolerance have not yet been found in germplasm or wild relatives of chickpea to warrant breeding for salinity tolerance. Use of alternative approaches, such as mutation to generate genetic diversity or introgression of alien genes from other crops (transgenic) are thus required, and these remain long-term objectives.  相似文献   

17.
18.
The sequence characterized amplified region (SCAR) marker SCK13(603), associated with ascochyta blight resistance in a chickpea recombinant inbred line (RIL) population, was used as anchored sequence for genome walking. The PCRs performed in the walking steps to walk in the same direction produced eight bands in 5' direction and five bands in 3' direction with a length ranking from 530 to 2,871 bp. The assembly of the bands sequences along with the sequence of SCK13(603) resulted in 7,815 bp contig. Blastn analyses showed stretches of DNA sequence mainly distributed from the nucleotides 1,500 to 4,500 significantly similar to Medicago truncatula genomic DNA. Three open reading frames (ORFs) were identified and blastp analysis of predicted amino acids sequences revealed that ORF1, ORF2 and ORF3 had significant similarity to a CCHC zinc finger protein, to an integrase, and to a precursor of the glucoamylase s1/s2, respectively, from M. truncatula. The high homology of the putative proteins derived from ORF1 and ORF2 with retrotransposon proteins and the prediction of the existence of conserved domains usually present in retrotransposon proteins indicate that the marker SCK13(603) is located in a region of a putative retrotransposon. The information generated in this study has contributed to increase the knowledge of this important region for blight resistance in chickpea.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号