首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We have purified from Xenopus laevis ovaries a major DNA polymerase alpha species that lacked DNA primase activity. This primase-devoid DNA polymerase alpha species exhibited the same sensitivity as the DNA polymerase DNA primase alpha to BuAdATP and BuPdGTP, nucleotide analogs capable of distinguishing between DNA polymerase delta and DNA polymerase DNA primase alpha. The primase-devoid DNA polymerase alpha species also lacked significant nuclease activity indicative of the alpha-like (rather than delta-like) nature of the DNA polymerase. Using a poly(dT) template, the primase-devoid DNA polymerase alpha species elongated an oligo(rA10) primer up to 51-fold more effectively than an oligo(dA10) primer. In direct contrast, the DNA polymerase DNA primase alpha complex showed only a 4.6-fold preference for oligoribonucleotide primers at the same template/primer ratio. The catalytic differences between the two DNA polymerase alpha species were most dramatic at a template/primer ratio of 300. The primase-devoid DNA polymerase alpha species was found at high levels throughout oocyte and embryonic development. This suggests that the primase-devoid DNA polymerase alpha species could play a physiological role during DNA chain elongation in vivo, even if it is chemically related to DNA polymerase DNA primase alpha.  相似文献   

2.
A protein that stimulates DNA polymerase alpha/primase many-fold on unprimed poly(dT) was purified to homogeneity from extracts of cultured mouse cells. The protein contains polypeptides of approximately 132 and 44 kDa, and the total molecular mass of 150 kDa calculated from Stokes radius (54 A) and sedimentation coefficient (6.7 S) indicates that it contains one each of the two subunits. The purified "alpha accessory factor" (AAF) also stimulates DNA polymerase alpha/primase in the self-primed reaction with unprimed single-stranded DNA. In addition to these effects on the coordinate activities of DNA polymerase alpha and DNA primase, stimulatory effects were also demonstrated separately on both the polymerase and primase activities of the enzyme complex. However, there was no stimulation with DNase-treated ("activated") DNA under normal conditions for assay of DNA polymerase alpha. The stimulatory activity of mouse AAF is highly specific for DNA polymerase alpha/primase; no effect was observed with mouse DNA polymerases beta, gamma, or delta, nor with retroviral, bacteriophage, or bacterial DNA polymerases. Mouse AAF stimulated human DNA polymerase alpha/primase with several different templates, similar to results with the mouse enzyme. However, it had very little effect on the DNA polymerase/primase from either Drosophila embryo or from yeast.  相似文献   

3.
Dissociation and reconstitution of a DNA polymerase alpha-primase complex   总被引:3,自引:0,他引:3  
The conditions for dissociation of the DNA polymerase alpha-primase complex (DNA polymerase alpha 1) have been examined. It was revealed that 50% ethylene glycol effectively dissociated the complex. The dissociated DNA polymerase and primase were purified to eliminate cross-contaminating activities by column chromatography using buffers containing 50% ethylene glycol. The sedimentation coefficients of the purified DNA polymerase and primase were 7.1S and 5.7S, respectively. These two enzymes were mixed in the presence of 20% ethylene glycol and the mixture was sedimented through a glycerol gradient containing no ethylene glycol. The DNA polymerase and primase activities co-sedimented at 9.1S which corresponds to the S value of intact alpha 1, indicating the reconstitution of the DNA polymerase alpha-primase complex.  相似文献   

4.
Immunoaffinity-purified DNA-polymerase-alpha--DNA-primase complex from calf thymus was phosphorylated in vitro by highly purified casein kinase II from the same tissue. Specific phosphorylation of the DNA-polymerizing alpha subunit and the primase-associated gamma subunit was observed. About 1 mol phosphate/mol polymerase--primase was incorporated. Despite this effect, neither the DNA polymerase nor the DNA primase activity were changed after phosphorylation by casein kinase II. Furthermore, dephosphorylation of polymerase--primase with alkaline phosphatase did not change the polymerase or the primase activity to a significant extent. Moreover, both alkaline phosphatase and casein kinase II had no effect on the processivity of DNA synthesis and on the lengths and amounts of primers formed by the DNA primase. Because DNA polymerase alpha maintained all its basic properties even after extensive treatment with alkaline phosphatase, it is unlikely that phosphorylation has a direct influence on the activities of the DNA-polymerase-alpha--DNA-primase complex. The possible influence of post-translational phosphorylation on the formation of a complex of polymerase alpha and its accessory proteins is discussed.  相似文献   

5.
With a procedure that allows the renaturation of the DNA polymerase catalytic activity in situ after SDS-polyacrylamide gel electrophoresis, we have compared the active polypeptides present in extracts from organisms covering a wide evolutionary range from prokaryotes to eukaryotes, namely: Escherichia coli, Oryza sativa, Daucus carota , Neurospora crassa, Dictyostelium discoideum, Saccharomyces cerevisiae, Ceratitis capitata, Leucophaea maderae , Xenopus laevis, rat tissues and human lymphoblastoid cells. Two main clusters of active peptides are visible in mammalian and adult insect tissues, characterized by a mol. wt. greater than 70000 and less than 50000, respectively. High mol. wt. peptides are heterogeneous in size and correspond to active fragments of DNA polymerase alpha, whereas low mol. wt. peptides show the same migration rate as purified DNA polymerase beta and are not generated by proteolysis of the high mol. wt. cluster, In the three species of fungi studied, only high mol. wt. peptides are found. The same is true in plant cells, where no DNA polymerase beta activity is detectable and the pattern of the high mol. wt. cluster is similar to that observed in E. coli extracts (which also lack low mol. wt. peptides). Also in mitochondria from higher and lower eukaryotes only high mol. wt. species are observed, and the active band(s) range from 70000 to 145000 daltons. Our results indicate that the structure of DNA polymerase has been highly conserved during evolution so that an active fragment of mol. wt. greater than or equal to 70 000 is always found in prokaryotic enzymes and in the replicative species of eukaryotic and mitochondrial DNA polymerases; at a certain stage in evolution, another species of low mol. wt. DNA polymerase (beta or beta-like) appears.  相似文献   

6.
7.
A previous paper reported the purification (from mouse cell extracts) and some of the properties of a protein, alpha accessory factor (AAF), that specifically stimulates DNA polymerase alpha/primase (1). We describe here studies on the mechanism of action of AAF. In the presence of AAF and a large excess of single-stranded circular DNA template, a molecule of DNA polymerase alpha/primase interacts with a single template DNA molecule priming and synthesizing multiple short DNA fragments covering thousands of nucleotides without detaching from the template, and, by many-fold repetition of the process, accomplishes serial replication of the population of DNA molecules. In contrast, without AAF the reaction involves the whole population of DNA molecules in parallel and with a very large number of binding events between DNA polymerase alpha/primase and DNA [corrected] template. The profound [corrected] increase in affinity of DNA polymerase alpha/primase for the DNA template that characterizes the mechanism suggests a functional identification of AAF as a template affinity protein. The resulting greater efficiency accounts for the ability of AAF to stimulate both the primase and polymerase activities of DNA polymerase alpha/primase. AAF also increases the processivity of DNA polymerase alpha/primase from approximately 15 to approximately 115 nucleotides, a size similar to that of mammalian Okazaki fragments, and it appears to allow DNA polymerase alpha/primase to traverse double-stranded regions of a DNA template. These features of the mechanism of AAF suggest that it may have a role in assisting DNA polymerase alpha/primase in synthesis of the lagging strand of a replication fork.  相似文献   

8.
T Yagura  T Kozu  T Seno  S Tanaka 《Biochemistry》1987,26(24):7749-7754
A hybrid cell line (HDR-854-E4) secreting monoclonal antibody (E4 antibody) against a subunit of human DNA polymerase alpha was established by immunizing mice with DNA replicase complex (DNA polymerase alpha-primase complex) prepared from HeLa cells. The E4 antibody immunoprecipitates DNA replicase complex from both human and mouse cells. The E4 antibody neutralizes the primase activity as assessed either by the direct primase assay (incorporation of [alpha-32P]AMP) or by assay of DNA polymerase activity coupled with the primase activity using unprimed poly(dT) as a template. The E4 antibody does not neutralize DNA polymerase alpha activity with the activated calf thymus DNA as a template. Western immunoblotting analysis shows that the E4 antibody binds to a polypeptide of 77 kilodaltons (kDa) which is tightly associated with DNA polymerase alpha. The 77-kDa polypeptide was distinguished from the catalytic subunit (160 and 180 kDa) for DNA synthesis which was detected by another monoclonal antibody, HDR-863-A5. Furthermore, it is unlikely that the 77-kDa peptide is the primase, since we found that the E4 antibody also immunoprecipitates the mouse 7.3S DNA polymerase alpha which has no primase activity, and Western immunoblotting analysis shows that the 77-kDa polypeptide is a subunit of the 7.3S DNA polymerase alpha. Furthermore, after dissociation of the primase from mouse DNA replicase by chromatography on a hydroxyapatite column in the presence of dimethyl sulfoxide and ethylene glycol, the 77-kDa polypeptide is associated with DNA polymerase alpha, and not with the primase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Wu K  Lai X  Guo X  Hu J  Xiang X  Huang L 《Molecular microbiology》2007,63(3):826-837
The heterodimeric primase from the hyperthermophilic archaeon Sulfolobus solfataricus synthesizes long RNA and DNA products in vitro. How primer synthesis by primase is coupled to primer extension by DNA polymerase in this organism is unclear. Here we show that the small subunit of the clamp loader replication factor C (RFC) of S. solfataricus interacted with both the catalytic and non-catalytic subunits of the primase by yeast two-hybrid and co-immunoprecipitation assays. Further, the primase-RFC interaction was also identified in the cell extract of S. solfataricus. Deletion analysis indicated that the small subunit of RFC interacted strongly with the N-terminal domain of the catalytic subunit of the primase. RFC stimulated dinucleotide formation but decreased the amount of primers synthesized by the primase. The inhibition of primer synthesis is consistent with the observation that RFC reduced the affinity of the primase for DNA templates. On the other hand, primase stimulated the ATPase activity of RFC. These findings suggest that the primase-RFC interaction modulates the activities of both enzymes and therefore may be involved in the regulation of primer synthesis and the transfer of primers to DNA polymerase in Archaea.  相似文献   

10.
DNA primase associated with 10 S DNA polymerase alpha from calf thymus   总被引:2,自引:0,他引:2  
Among multiple subspecies of DNA polymerase alpha of calf thymus, only 10 S DNA polymerase alpha had a capacity to initiate DNA synthesis on an unprimed single-stranded, circular M13 phage DNA in the presence of ribonucleoside triphosphates (DNA primase activity). The primase was copurified with 10 S DNA polymerase alpha through the purification and both activities cosedimented at 10 S through gradients of either sucrose or glycerol. Furthermore, these two activities were immunoprecipitated at a similar efficiency by a monoclonal antibody directed against calf thymus DNA polymerase alpha. These results indicate that the primase is tightly bound to 10 S DNA polymerase alpha. The RNA polymerizing activity was resistant to alpha-amanitin, required high concentration of all four ribonucleoside triphosphates (800 microM) for its maximal activity, and produced the limited length of oligonucleotides (around 10 nucleotides long) which were necessary to serve as a primer for DNA synthesis. Covalent bonding to RNA to DNA was strongly suggested by the nearest neighbour frequency analysis and the DNAase treatment. The DNA synthesis primed by the RNA oligomers may be carried out by the associating DNA polymerase alpha because it was strongly inhibited by araCTP, resistant to d2TTP, and was also inhibited by aphidicolin but at relatively high concentration. The primase preferred single-stranded DNA as a template, but it also showed an activity on the double-stranded DNA from calf thymus at an efficiency of approx. 10% of that with single-stranded DNA.  相似文献   

11.
DNA primase activity has been resolved from a purified DNA primase-polymerase alpha complex of HeLa cells by hydrophobic affinity chromatography on phenylSepharose followed by chromatography on hexylagarose. This procedure provides a good yield (55%) of DNA primase that is free from polymerase alpha. The free DNA primase activity was purified to near homogeneity and its properties characterized. Sodium dodecyl sulfate polyacrylamide gel electrophoretic analysis of the purified free DNA primase showed a major protein staining band of Mr 70,000. The native enzyme in velocity sedimentation has an S20'W of 5. DNA primase synthesizes RNA oligomers with single-stranded M-13 DNA, poly(dT) and poly(dC) templates that are elongated by the DNA polymerase alpha in a manner that has already been described for several purified eukaryotic DNA primase-polymerase alpha complexes. The purified free DNA primase activity is resistant to neutralizing anti-human DNA polymerase alpha antibodies, BuPdGTP and aphidicolin that specifically inhibit the free DNA polymerase alpha and also DNA polymerase alpha complexed with the primase. The free primase activity is more sensitive to monovalent salt concentrations and is more labile than polymerase alpha. Taken together these results indicate that the DNA primase and polymerase alpha activities of the DNA primase-polymerase alpha complex reside on separate polypeptides that associate tightly through hydrophobic interactions.  相似文献   

12.
J M Collins  A K Chu 《Biochemistry》1987,26(18):5600-5607
It is well-known that there are multiple forms of DNA polymerase alpha. In order to determine which form(s) is (are) tightly bound, the activities were dissociated from DNA-poor nuclear matrices, with octyl beta-D-glucoside. Sucrose gradient sedimentation analysis revealed three bands with s values of 7.5, 10.5, and 13. The 7.5S form was free of DNA primase and represented only 10% of the total DNA polymerase alpha bound to the nuclear matrix. The 13S and the 10.5S forms each contained DNA primase activity. The 10.5S form comprised 85% of the DNA polymerase alpha activity and 95% of the DNA primase activity, dissociated from the nuclear matrix. Neither temperature of nuclease digestion nor various salt treatments of nuclei had significant effects on the proportions of DNA polymerase alpha and DNA primase activities bound to, or subsequently dissociated from, nuclear matrices. In a comparison of primase activity bound to the nuclear matrix, dissociated from the nuclear matrix, and in the soluble fraction, it was found that the bound activity had a lower ATP dependence, had less KCl inhibition, and was less sensitive to heat, compared to the dissociated and soluble activities. No differences in Mg2+ or pH dependence were noted. The amounts of DNA polymerase alpha and DNA primase activities bound to the nuclear matrix varied over the cell cycle of synchronized cells. Over the S phase, there were two peaks of matrix-bound DNA primase and two peaks of subsequently dissociated DNA polymerase alpha-DNA primase complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Preferential binding of DNA primase to the nuclear matrix in HeLa cells   总被引:5,自引:0,他引:5  
Studies of the spatial organization of DNA replication have provided increasing evidence of the importance of the nuclear matrix. We have previously reported a relationship between rates of DNA synthesis and the differential binding of DNA polymerase alpha to the nuclear matrix over the S-phase. We now report the detection of DNA primase bound to the HeLa nuclear matrix. Matrix-bound primase was measured both indirectly, by the incorporation of [32P]dAMP into an unprimed single-stranded template, poly(dT), and directly, by the incorporation of [3H]AMP into matrix DNA. Characteristics of this system include a requirement for ATP, inhibition by adenosine 5'-O-(thiotriphosphate), a primase inhibitor, and insensitivity to aphidicolin and alpha-amanitine, inhibitors of polymerase alpha and RNA polymerase, respectively. Subcellular quantification of primase and polymerase alpha activity revealed that while most (approximately 72%) primase activity is bound to the matrix, only a minority (approximately 32%) of polymerase alpha activity is matrix-bound. Treatment of the nuclear matrix with beta-D-octylglucoside allowed the solubilization of approximately 54% of primase activity and approximately 39% of the polymerase alpha activity. This data provides further evidence of a structural and functional role for the nuclear matrix in DNA replication. The ability to solubilize matrix-bound replicative enzymes may prove to be an important tool in the elucidation of the spatial organization of DNA replication.  相似文献   

14.
Cell-cycle-dependent expression of DNA primase activity   总被引:1,自引:0,他引:1  
Protein extracts were prepared at various times after serum stimulation of growth-arrested mouse 3T3 fibroblasts. The extracts were fractionated by sucrose gradient centrifugation and used to determine the activities of DNA polymerase alpha and DNA primase. We found that polymerase and primase appeared in close association in one homogeneous 8.2-S peak. Neither polymerase, free of associated primase, nor primase, free of polymerase, could be detected at any time after serum stimulation. The activities of both enzymes started to increase concomitantly at the beginning of the DNA replication phase of the cell cycle. We found five to six times more DNA primase activity in replicating than in resting 3T3 cells. Besides DNA primase, a second additional priming activity could be detected. This activity sedimented at 12.5 S and corresponded most probably to RNA polymerase I.  相似文献   

15.
As a step toward the molecular elucidation of the putative replicational apparatus associated with the nuclear matrix, we have investigated the possible matrix association of several replicational related enzymes. In addition to the previously identified DNA polymerase alpha, DNA primase, 3'-5' exonuclease, RNase H, and DNA methylase were all recovered at significant levels (20-30% of total nuclear activity) in nuclear matrix isolated from regenerating rat liver during maximal in vivo replication (22 h post-hepatectomy). In contrast, DNA ligase was not detected on the nuclear matrix even though significant activity was present in isolated nuclei. Examination of the replicative dependency of these enzyme activities following partial hepatectomy revealed pre-replicative elevations which were distinct for each matrix-bound enzyme. A second late-replicative peak in DNA methylase is consistent with a role of this matrix-bound enzyme in the maintenance of the inheritable methylation pattern. Mild sonication resulted in a significant release of all of these activities except RNase H. A major portion of the matrix-solubilized DNA polymerase alpha, DNA primase, 3'-5' exonuclease, and DNA methylase activities cosedimented on sucrose gradients between approximately 8-12 S. Our results are consistent with the organization of at least a portion of these replicative enzymes into nuclear matrix-bound replicational complexes. We also propose a novel pre-replicative assembly model of the matrix-bound replicational apparatus in which DNA primase plays an initial and critical role.  相似文献   

16.
Murine cells or cell extracts support the replication of plasmids containing the replication origin (ori-DNA) of polyomavirus (Py) but not that of simian virus 40 (SV40), whereas human cells or cell extracts support the replication of SV40 ori-DNA but not that of Py ori-DNA. It was shown previously that fractions containing DNA polymerase alpha/primase from permissive cells allow viral ori-DNA replication to proceed in extracts of nonpermissive cells. To extend these observations, the binding of Py T antigen to both the permissive and nonpermissive DNA polymerase alpha/primase was examined. Py T antigen was retained by a murine DNA polymerase alpha/primase but not by a human DNA polymerase alpha/primase affinity column. Likewise, a Py T antigen affinity column retained DNA polymerase alpha/primase activity from murine cells but not from human cells. The murine fraction which bound to the Py T antigen column was able to stimulate Py ori-DNA replication in the nonpermissive extract. However, the DNA polymerase alpha/primase activity in this murine fraction constituted only a relatively small proportion (approximately 20 to 40%) of the total murine DNA polymerase alpha/primase that had been applied to the column. The DNA polymerase alpha/primase purified from the nonbound murine fraction, although far more replete in this activity, was incapable of supporting Py DNA replication. The two forms of murine DNA polymerase alpha/primase also differed in their interactions with Py T antigen. Our data thus demonstrate that there are two distinct populations of DNA polymerase alpha/primase in murine cells and that species-specific interactions between T antigen and DNA polymerases can be identified. They may also provide the basis for initiating a novel means of characterizing unique subpopulations of DNA polymerase alpha/primase.  相似文献   

17.
With a specific stimulating factor of mouse DNA replicase for its detection, a novel form of DNA polymerase alpha (DNA replicase) associated with DNA primase activity was partially purified from several vertebrates, i.e. the cherry salmon Oncorhyncus masou, the frog Xenopus laevis, the chick, and human (HeLa cells). Activity similar to DNA replicase was also partially purified from embryos of the sea urchin Anthocidaris crassispina. In all vertebrates examined, two forms of DNA polymerase alpha were separated by chromatography on ion-exchange columns; one form (DNA replicase) was associated with DNA primase activity and could utilize unprimed single-stranded DNAs as template, and the other could not utilize unprimed single-stranded DNAs. The sedimentation coefficient of the former, the novel form, obtained from each vertebrate in a glycerol gradient at high ionic strength was slightly larger than that of the other form which had no primase activity, except in the case of chick embryos where the sedimentation coefficients of the two forms were almost the same. The initiator RNA synthesized with the DNA primase activity associated with DNA replicase obtained from salmon, chick, HeLa cells, and sea urchin was 8 to 10 nucleotides long. The stimulating factor obtained from Ehrlich ascites cells has been found to stimulate both the activities of DNA primase and DNA polymerase in DNA replicase obtained from all the vertebrates examined, when unprimed single-stranded DNA was used as template, while the factor failed to stimulate both the activities of the enzyme of sea urchin embryos. This factor thus should be an effective tool in studies on the mechanism of vertebrate DNA replication.  相似文献   

18.
Previously, the activity of DNA polymerase alpha was found in the meiotic prophase I including non-S phase stages, in the basidiomycetes, Coprinus cinereus. To study DNA polymerase alpha during meiosis, we cloned cDNAs for the C. cinereus DNA polymerase alpha catalytic subunit (p140) and C. cinereus primase small subunit (p48). Northern analysis indicated that both p140 and p48 are expressed not only at S phase but also during the leptotene/zygotene stages of meiotic prophase I. In situ immuno-staining of cells at meiotic prophase I revealed a sub population of p48 that does not colocalize with p140 in nuclei. We also purified the pol alpha-primase complex from meiotic cells by column chromatography and characterized its biochemical properties. We found a subpopulation of primase that was separated from the pol alpha-primase complex by phosphocellulose column chromatography. Glycerol gradient density sedimentation results indicated that the amount of intact pol alpha-primase complex in crude extract is reduced, and that a smaller complex appears upon meiotic development. These results suggest that the form of the DNA polymerase alpha-primase complex is altered during meiotic development.  相似文献   

19.
DNA polymerase I and DNA primase complex in yeast   总被引:10,自引:0,他引:10  
Chromatographic analysis of poly(dT) replication activity in fresh yeast extracts showed that the activities required co-fractionate with the yeast DNA polymerase I. Since poly(dT) replication requires both a primase and a DNA polymerase, the results of the fractionation studies suggest that these two enzymes might exist as a complex in the yeast extract. Sucrose gradient analysis of concentrated purified yeast DNA polymerase I preparations demonstrates that the yeast DNA polymerase I does sediment as a complex with DNA primase activity. Two DNA polymerase I peptides estimated at 78,000 and 140,000 Da were found in the complex that were absent from the primase-free DNA polymerase fraction. Rabbit anti-yeast DNA polymerase I antibody inhibits DNA polymerase I but not DNA primase although rabbit antibodies are shown to remove DNA primase activity from solution by binding to the complex. Mouse monoclonal antibody to yeast DNA polymerase I binds to free yeast DNA polymerase I as well as the complex, but not to the free DNA primase activity. These results suggest that these two activities exist as a complex and reside on the different polypeptides. Replication of poly(dT) and single-stranded circular phage DNA by yeast DNA polymerase I and primase requires ATP and dNTPs. The size of the primer produced is 8 to 9 nucleotides in the presence of dNTPs and somewhat larger in the absence of dNTPs. Aphidicolin, an inhibitor of yeast DNA polymerase I, is not inhibitory to the yeast DNA primase activity. The primase activity is inhibited by adenosine 5'-(3-thio)tri-phosphate but not by alpha-amanitin. The association of yeast DNA polymerase I and yeast DNA primase can be demonstrated directly by isolation of the complex on a column containing yeast DNA polymerase I mouse monoclonal antibody covalently linked to Protein A-Sepharose. Both DNA polymerase I and DNA primase activities are retained by the column and can be eluted with 3.5 M MgCl2. Part of the primase activity can be dissociated from DNA polymerase on the column with 1 M MgCl2 and this free primase activity can be detected as poly(dT) replication activity in the presence of Escherichia coli polymerase I.  相似文献   

20.
A primase activity associated to DNA polymerase alpha from rat liver is described. Both activities were absent in normal adult rat liver but were concomitantly induced after partial hepatectomy. As previously shown for polymerase alpha and DNA topoisomerase II, primase activity reached a maximum value 40-43 h after the partial removal of the liver. Primase activity was shown to catalyze dNMP incorporation on unprimed single-stranded DNA template (M13 DNA) in the presence of rNTP. The activity was not detectable on poly(dA) or poly(dG) but was efficient on poly(dT) or poly(dC). However, the reliability of the primase assay in the presence of poly(dC) was dependent upon the degree of purification of the enzyme. The ribo primers were about 10 nucleotides long, and the reaction was completely independent of alpha-amanitin, a strong inhibitor of RNA polymerases II and III. Primase and polymerase were found tightly associated. A cosedimentation on a 5-20% sucrose gradient was always obtained, independent of the ionic strength. There was also a close coincidence between alpha-polymerase and primase activities during phosphocellulose, hydroxylapatite, and single-stranded DNA Ultrogel chromatography. It has been previously demonstrated by us and others that primase and alpha-polymerase are on separated polypeptides. The association of two activities in the replication complex and the conditions allowing their separation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号